Anne-Sophie Chauvin

EPFL SB SCGC-GE
CP1 268 (Amphipole UNIL)
Rte de la Sorge
1015 Lausanne

Mission

Anne-Sophie Chauvin is involved in the fields of chemistry, and supramolecular chemistry, especially with f elements, with a focus on developing novel coordination polymers with actinides and exploring luminescence properties with lanthanides for biological and technological applications (such as invisible inks).
In parallel, she is also developing palladium-based metallacages, further expanding her interest in the construction of functional supramolecular architectures through coordination-driven self-assembly.
She is teaching General and Analytical Chemistry to first-year Pharmacy and Biology students at UNIL, and overseeing practical sessions for students in chemistry, pharmacy, and biology.
She is elected at the FSB Faculty Council and was member of the EPFL Assembly (AE) for 6 years, until 2018. She was member of the Management committee of the Cost CM 1006 action entitled Eufen: European F-Element Network and Fellow of the Royal Society of Chemistry (FRSC). She is Member of the Swiss Chemical Society (SCS).
 Anne-Sophie Chauvin began her academic journey at the University Paris V-René Descartes in France, where she earned her PhD in bioinorganic chemistry, focusing on mimetic complexes of Nitrile Hydratase's active site under the guidance of Prof. Jean-Claude Chottard. After completing a postdoctoral stay at the University of Geneva with Prof. Alexandre Alexakis, where she researched the determination of the absolute configuration of chiral alcohols  by 31-P NMR , she continued her work in supramolecular chemistry in Prof. Jean-Claude G. Bünzli's group. Here, her research centered on designing ligands that form water-soluble complexes with luminescent lanthanides for biological applications. She was appointed part-time lecturer in 2001, and in 2006, she obtained the habilitation to direct research (HDR) from the University René Descartes. In 2007, she became Maître d'Enseignement et de Recherche at EPFL. Her later research interests have included photovoltaics and organic dyes for dye-sensitized solar cells (DSSC) at the Laboratory for Photonics and Interfaces (LPI) headed by Pr. Michaël Graëtzel, as well as developing invisible inks based on lanthanide complexes. Since 2014, with the arrival of Dr Marinella Mazzanti at EPFL she has returned to studying lanthanide and actinide chemistry, focusing on luminescence and coordination polymers involving actinides (U(IV), U(V), Th(IV)). In March 2025, she joined the group of Kay Severin to further her work in supramolecular chemistry and she is developing Pd metallacages.

Alumni

Dr Steve Comby
Dr Julien Andrès
Dr Aurélien Willauer
Dr Andrei Andreichenko

Accessing Carbon, Boron and Germanium Spiro Stereocentres in a Unified Catalytic Enantioselective Approach

Y.-X. CaoA.-S. ChauvinS. TongL. AlamaN. Cramer

NATURE CATALYSIS. 2025. DOI : 10.1038/s41929-025-01352-3.

Peptide‐Carbazolyl Cyanobenzene Conjugates: Enabling Biomolecule Functionalization via Photoredox and Energy Transfer Catalysis

X.-Y. LuiW. CaiA.-S. ChauvinB. FierzJ. Waser

Angewandte Chemie. 2025. DOI : 10.1002/ange.202507602.

Coordination polymers: from uranium(IV) and thorium(IV) to non-uranyl U(V) and U(VI)

A. Andreichenko / A.-S. ChauvinM. Mazzanti (Dir.)

Lausanne, EPFL, 2025. DOI : 10.5075/epfl-thesis-11189.

Peptide-Carbazolyl Cyanobenzene Conjugates: Enabling Biomolecule Functionalization via Photoredox and Energy Transfer Catalysis

X.-Y. LuiW. CaiA.-S. ChauvinB. FierzJ. Waser

2024

Multielectron Redox Chemistry of Uranium by Accessing the plus II Oxidation State and Enabling Reduction to a U(I) Synthon

M. KeenerR. A. K. ShivaraamT. RajeshkumarM. TricoireR. Scopelliti  et al.

Journal Of The American Chemical Society. 2023. DOI : 10.1021/jacs.3c05626.

Uranium(IV) and Thorium(IV) Coordination Polymers Based on Tritopic Carboxylic Acids

A. AndreichenkoA. R. WillauerT. SchertenleibA. CureR. Scopelliti  et al.

Inorganic Chemistry. 2023. DOI : 10.1021/acs.inorgchem.3c00881.

Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization

Y. RaoC. T. PalumboA. VenkateshM. KeenerG. Stevanato  et al.

Journal Of Physical Chemistry C. 2022. DOI : 10.1021/acs.jpcc.2c01721.

Structure, reactivity and luminescence studies of triphenylsiloxide complexes of tetravalent lanthanides

A. R. WillauerI. DouairA.-S. ChauvinF. Fadaei-TiraniJ.-C. G. Bunzli  et al.

Chemical Science. 2022. DOI : 10.1039/d1sc05517h.

Stabilizing Unusual Oxidation States of Lanthanides in Molecular Complexes: Synthesis, Properties, and Reactivity

A. R. Willauer / M. MazzantiA.-S. Chauvin (Dir.)

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-9294.

Synthesis and Characterization of Water Stable Uranyl(V) Complexes

R. FaizovaF. Fadaei‐TiraniA. ChauvinM. Mazzanti

Angewandte Chemie International Edition. 2021. DOI : 10.1002/anie.202016123.

Vascular-targeted micelles as a specific MRI contrast agent for molecular imaging of fibrin clots and cancer cells

V. VorobievS. AdriouachL. A. CroweS. LengletA. Thomas  et al.

European Journal Of Pharmaceutics And Biopharmaceutics. 2021. DOI : 10.1016/j.ejpb.2020.11.017.

Colorimetry of Luminescent Lanthanide Complexes

J. AndresA.-S. Chauvin

Molecules. 2020. DOI : 10.3390/molecules25174022.

A Factor Two Improvement in High-Field Dynamic Nuclear Polarization from Gd(III) Complexes by Design

G. StevanatoD. J. KubickiG. MenzildjianA.-S. ChauvinK. Keller  et al.

Journal Of The American Chemical Society. 2019. DOI : 10.1021/jacs.9b03723.

Lanthanides in Solar Energy Conversion

J.-C. G. BünzliA.-S. Chauvin

Handbook on the Physics and Chemistry of Rare Earths; Amsterdam: Elsevier Science B.V., 2014. p. 169 - 281.

Editorial - Solar Energy Harvesting

A.-S. ChauvinM. Graetzel

Chimia. 2013.

Synthesis and cell localization of self-assembled dinuclear lanthanide bioprobes

A.-S. ChauvinF. ThomasB. SongC. D. B. VandevyverJ.-C. G. Buenzli

Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences. 2013. DOI : 10.1098/rsta.2012.0295.

Energy transfer in coumarin-sensitised lanthanide luminescence: investigation of the nature of the sensitiser and its distance to the lanthanide ion

J. AndresA.-S. Chauvin

Physical Chemistry Chemical Physics. 2013. DOI : 10.1039/c3cp52279b.

New sensitizers for dye-sensitized solar cells featuring a carbon-bridged phenylenevinylene

X. ZhuH. TsujiA. YellaA.-S. ChauvinM. Graetzel  et al.

Chemical Communications (ChemComm). 2013. DOI : 10.1039/c2cc37124c.

From Luminescent Lanthanide Complexes to Color Reproduction and Optical Document Security with Invisible Luminescent Inks

J. Andrès / A.-S. ChauvinR. Hersch (Dir.)

Lausanne, EPFL, 2012. DOI : 10.5075/epfl-thesis-5605.

6-Phosphoryl Picolinic Acids as Europium and Terbium Sensitizers

J. AndresA.-S. Chauvin

Inorganic Chemistry. 2011. DOI : 10.1021/ic200983y.

Lighting-up cancerous cells and tissues with lanthanide luminescence

J.-C. BünzliC. VandevyverA.-S. ChauvinM. GijsH.-A. Lehr

CHIMIA. 2011. DOI : 10.2533/chimia.2011.361.

Multiphoton-Excited Luminescent Lanthanide Bioprobes: Two- and Three-Photon Cross Sections of Dipicolinate Derivatives and Binuclear Helicates

S. V. EliseevaG. AuböckF. van MourikA. CannizzoB. Song  et al.

The Journal of Physical Chemistry B. 2010. DOI : 10.1021/jp9090206.

Europium Complexes of Tris(dipicolinato) Derivatives Coupled to Methylumbelliferone: A Double Sensitization

J. AndresA.-S. Chauvin

European Journal Of Inorganic Chemistry. 2010. DOI : 10.1002/ejic.201000126.

Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime

J.-C. G. BuenzliA.-S. ChauvinH. K. KimE. DeitersS. V. Eliseeva

Coordination Chemistry Reviews. 2010. DOI : 10.1016/j.ccr.2010.04.002.

Bioconjugated lanthanide luminescent helicates as multilabels for lab-on-a-chip detection of cancer biomarkers

V. Fernandez-MoreiraB. SongV. SivagnanamA.-S. ChauvinC. D. B. Vandevyver  et al.

Analyst. 2010. DOI : 10.1039/b922124g.

Sensitized near-IR luminescence of lanthanide complexes based on push-pull diketone derivatives

N. S. BaekY. H. KimY. K. EomJ. H. OhH. K. Kim  et al.

Dalton Transactions. 2010. DOI : 10.1039/b915893f.

Increasing the efficiency of lanthanide luminescent bioprobes: bioconjugated silica nanoparticles as markers for cancerous cells

S. V. EliseevaB. SongC. D. B. VandevyverA.-S. ChauvinJ. B. Wacker  et al.

New Journal Of Chemistry. 2010. DOI : 10.1039/c0nj00440e.

Luminescent Bimetallic Lanthanide Bioprobes for Cellular Imaging with Excitation in the Visible-Light Range

E. DeitersB. SongA.-S. ChauvinC. D. B. VandevyverF. Gumy  et al.

Chemistry - A European Journal. 2009. DOI : 10.1002/chem.200801868.

Luminescent Lanthanide Helicates Self-Assembled from Ditopic Ligands Bearing Phosphonic Acid or Phosphoester Units

A.-S. ChauvinS. CombyM. BaudC. De PianoC. Duhot  et al.

Inorganic Chemistry. 2009. DOI : 10.1021/ic901424w.

Effect of the length of polyoxyethylene substituents on luminescent bimetallic lanthanide bioprobes

E. DeitersB. SongA.-S. ChauvinC. D. B. VandevyverJ.-C. G. Bünzli

New Journal of Chemistry. 2008. DOI : 10.1039/b800516h.

A versatile method for quantification of DNA and PCR products based on time-resolved EuIII luminescence

B. SongC. D. B. VandevyverE. DeitersA.-S. Chauvinl. Hemmilä  et al.

Analyst. 2008. DOI : 10.1039/b807959e.

Remarkable Tuning of the Photophysical Properties of Bifunctional Lanthanide tris(Dipicolinates) and its Consequence on the Design of Bioprobes

A.-L. GassnerC. DuhotJ.-C. G. BünzliA.-S. Chauvin

Inorganic Chemistry. 2008. DOI : 10.1021/ic800842f.

Synthesis of octa(1,1,3,3-tetramethylbutyl)octakis (dimethylphosphinoylmethyleneoxy)calix[8]arene and its application in the synergistic solvent extraction and separation of lanthanoids

E. TashevM. AtanassovaS. VarbanovT. ToshevaS. Shenkov  et al.

Separation And Purification Technology. 2008. DOI : 10.1016/j.seppur.2008.09.011.

Lanthanide Bimetallic Helicates for in Vitro Imaging and Sensing

J.-C. G. BünzliA.-S. ChauvinC. D. VandevyverB. SongS. Comby

Annals of the New York Academy of Sciences. 2008. DOI : 10.1196/annals.1430.010.

Autoxidation of a 4-iminoimidazolidin-2-one with a tertiary 5-hydrogen to its 5-hydroxy derivative

V. T. AngelovaN. G. VassilevA.-S. ChauvinA. H. KoedjikovP. M. Ivanov  et al.

Arkivoc. 2008. DOI : 10.3998/ark.5550190.0009.b02.

A Versatile Ditopic Ligand System for Sensitizing the Luminescence of Bimetallic Lanthanide Bio-Imaging Probes

A.-S. ChauvinS. CombyB. SongC. D. B. VandevyverJ.-C. G. Bünzli

Chemistry - A European Journal. 2008. DOI : 10.1002/chem.200701357.

Time-resolved luminescence microscopy of bimetallic lanthanide helicates in living cells

B. SongC. D. B. VandevyverA.-S. ChauvinJ.-C. G. Bünzli

Org. Biomol. Chem.. 2008. DOI : 10.1039/b811427g.

Luminescent lanthanides bioprobes emitting in the visible and/or near-infrared ranges

S. Comby / J.-C. BünzliA.-S. Chauvin (Dir.)

Lausanne, EPFL, 2008. DOI : 10.5075/epfl-thesis-4052.

New Opportunities for Lanthanide Luminescence

J.-C. G. BunzliS. CombyA.-S. ChauvinC. D. B. Vandevyver

Journal of Rare Earths. 2007. DOI : 10.1016/S1002-0721(07)60420-7.

Non-Cytotoxic, Bifunctional EuIII and TbIII Luminescent Macrocyclic Complexes for Luminescence Resonant Energy- Transfer Experiments

A.-C. FerrandD. ImbertA.-S. ChauvinC. D. B. VandevyverJ.-C. G. Bünzli

Chemistry - A European Journal. 2007. DOI : 10.1002/chem.200700819.

Luminescent lanthanide bimetallic triple-stranded helicates as potential cellular imaging probes

C. D. B. VandevyverA.-S. ChauvinS. CombyJ.-C. G. Bünzli

Chemical Communications (ChemComm). 2007. DOI : 10.1039/B701482A.

Lanthanide Complexes with a Calix[8]arene Bearing Phosphinoyl Pendant Arms

L. N. PuntusA.-S. ChauvinS. VarbanovJ.-C. G. Bünzli

European Journal of Inorganic Chemistry. 2007. DOI : 10.1002/ejic.200601180.

Synthesis and characterization of partially substituted at lower rim phosphorus containing calix(4)arenes

E. TashevT. ToshevaS. ShenkovA.-S. ChauvinV. Lachkova  et al.

Supramolecular Chemistry. 2007. DOI : 10.1080/10610270601105703.

A Polyoxyethylene-Substituted Bimetallic Europium Helicate for Luminescent Staining of Living Cells

A.-S. ChauvinS. CombyB. SongC. D. B. VandevyverF. Thomas  et al.

Chemistry - A European Journal. 2007. DOI : 10.1002/chem.200700883.

Exploring the potential of europium(III) luminescence for the detection of phase transitions in ionic liquid crystals

J. KocherF. GumyA.-S. ChauvinJ.-C. G. Bünzli

Journal of Materials Chemistry. 2007. DOI : 10.1039/b614036j.

Fluorinated β-Diketones for the Extraction of Lanthanide Ions: Photophysical Properties and Hydration Numbers of Their EuIII Complexes

A.-S. ChauvinF. GumyI. MatsubayashiY. HasegawaJ.-C. G. Bünzli

European Journal of Inorganic Chemistry. 2006. DOI : 10.1002/ejic.200500849.

Stable 8-hydroxyquinolinate-based podates as efficient sensitizers of lanthanide near-infrared luminescence

S. CombyD. ImbertA.-S. ChauvinJ.-C. G. Bunzli

Inorganic chemistry. 2006. DOI : 10.1021/ic0515249.

Use of Dipicolinate-Based Complexes for Producing Ion-Imprinted Polystyrene Resins for the Extraction of Yttrium-90 and Heavy Lanthanide Cations

A.-S. ChauvinJ.-C. G. BünzliF. BochudR. ScopellitiP. Froidevaux

Chemistry - A European Journal. 2006. DOI : 10.1002/chem.200501370.

Lanthanide 8-hydroxyquinoline-based podates with efficient emission in the NIR range

D. ImbertS. CombyA.-S. ChauvinJ.-C. G. Buenzli

Chemical Communications (ChemComm). 2005. DOI : 10.1039/B416575F.

Influence of Anionic Functions on the Coordination and Photophysical Properties of Lanthanide(III) Complexes with Tridentate Bipyridines

S. CombyD. ImbertA.-S. ChauvinJ.-C. G. BuenzliL. J. Charbonniere  et al.

Inorganic Chemistry. 2004. DOI : 10.1021/ic049118x.

Cobalt(II), nickel(II), copper(II), and zinc(II) complexes with a p-tert-butylcalix[4]arene fitted with phosphinoyl pendant arms

V. VidevaA.-S. ChauvinS. VarbanovC. BauxR. Scopelliti  et al.

European Journal of Inorganic Chemistry. 2004. DOI : 10.1002/ejic.200300858.

Europium and Terbium tris(Dipicolinates) as Secondary Standards for Quantum Yield Determination

A.-S. ChauvinF. GumyD. ImbertJ.-C. G. Buenzli

Spectroscopy Letters. 2004. DOI : 10.1081/SL-120039700.

Tuning the keto equilibrium in 4-substituted dipicolinic acid derivatives

A.-S. ChauvinS. GrasJ.-C. G. Bunzli

Organic & Biomolecular Chemistry. 2003. DOI : 10.1039/b211267c.

General chemistry for students enrolled in a life sciences curriculum

J.-C. G. BunzliE. FernandesD. ImbertA.-S. ChauvinF. Emmenegger  et al.

CHIMIA. 2003. DOI : 10.2533/000942903777679587.

Self-assembled triple-stranded lanthanide dimetallic helicates with a ditopic ligand derived from bis(benzimidazole)pyridine and featuring an (4-isothiocyanatophenyl)ethynyl substituent

R. TripierM. HollensteinM. ElhabiriA.-S. ChauvinG. Zucchi  et al.

Helvetica Chimica Acta. 2002. DOI : 10.1002/1522-2675(200207)85:7<1915::AID-HLCA1915>3.0.CO;2-N.

A new versatile methodology for the synthesis of 4-halogenated 6-diethylcarbamoylpyridine-2-carboxylic acids

A. S. ChauvinR. TripierJ. C. G. Bunzli

Tetrahedron Letters. 2001. DOI : 10.1016/S0040-4039(01)00392-6.

Cours

Chimie TP I

CH-108(a)

The student will learn how to work in a chemistry laboratory. He/she will acquire a quantitative and/or qualitative approach. TP carried out are in relation to the courses of chemistry and will be followed by a second part "TP2".

Chimie générale et analytique I (TP pour PHA)

UNIL-104

The objective of these practical works is to familiarize the student one with the techniques of basic manipulations and with the classical and instrumental methods of analysis. The laboratory work are also an illustration of the concepts described in the courses of general analytical Chemitry I+ II

Approfondissements en chimie analytique (pour PHA)

UNIL-132

This course is complementary to the course entitled general and analytical chemistry II (UNIL 102) for biologists and pharmacists. It is given only to the students of pharmacy. It makes it possible to go further in analytical chemistry.

Chimie générale et analytique II (TP pour PHA)

UNIL-105

These practical works are the continuation of the practical works TP I given to the fall semester

Chimie générale et analytique I (pour BIO+PHA)

UNIL-101

To acquire the basic concepts to understand the impact of chemistry for a biologist or a pharmacist, in particular with regard to the comprehension of the essential phenomena of the Life (breathing, cellular activities)

Chimie générale et analytique I (TP pour BIO)

UNIL-103

The objective of these practical works is to familiarize the student one with the techniques of basic manipulations and with the classical and instrumental methods of analysis. The laboratory work are also an illustration of the concepts described in the courses of general analytical Chemitry I+ II

Chimie TP II

CH-109(a)

Introduction to basic manipulations in general, inorganic and analytical chemistry. Introduction to classical quantitative analysis. Learn to carry out quantitative analysis. General principles of the classical quantitative analysis.

Chimie générale et analytique II (pour BIO+PHA)

UNIL-102

This formation is in continuation to the course "General Chemistry I". It aims to give to the biologists and pharmacists a broad knowledge on chemistry and at applying the basic concepts previously acquired.