Assyr Abdulle

Professeur ordinaire
assyr.abdulle@epfl.ch +41 21 693 03 11 http://anmc.epfl.ch/
EPFL SB MATH ANMC
MA C2 657 (Bâtiment MA)
Station 8
CH-1015 Lausanne
+41 21 693 03 11
+41 21 693 76 48
Local: MA C2 657
EPFL > SB > MATH > ANMC
Web site: Site web: https://anmc.epfl.ch/
+41 21 693 03 11
EPFL > SB > SB-SMA > SMA-ENS
Biographie
À l'EPFL, il a été le directeur-fondateur du master en sciences computationnelles en 2009, directeur de l'institut MATHICSE en 2016 et directeur-fondateur de l'institut de mathématiques en 2017.
Ses intérêts de recherche concernent les méthodes numériques pour les équations aux dérivées partielles multi-échelles et les
systèmes dynamiques déterministes et stochastiques, les méthodes d'homogénéisation numérique et de réduction de modèles, les problèmes Bayésiens inverses avec des applications en biologie, chimie, science des matériaux, géologie et médecine. Il a notamment contribué à développer les méthodes multi-échelles hétérogènes (HMM), a développé des méthodes numériques pour des problèmes stochastiques multi-échelles et ergodiques et a introduit les méthodes Runge-Kutta-Chebyshev orthogonales (ROCK) pour les systèmes d'équations différentielles raides qui ont depuis lors été généralisées à des systèmes stochastiques multi-échelles.
En 2005 il obtient le "New Talent Award" lors de l'édition 2005 de la série de conférences internationales biennales SciCADE. En 2007 il obtient un EPSRC Advanced Research Fellowship du conseil britannique de la recherche en ingénierie et en sciences physiques (EPSRC). En 2009 il est lauréat du prix James-Wilkinson en analyse numérique et calcul scientifique, décerné par la Society for Industrial and Applied Mathematics (SIAM) et en 2013 il est lauréat du prix Germund Dahlquist aussi décerné par SIAM.
Lien vers la page de la Chair ANMC
Lien vers la page personnel (CV, publications)
Collaborateurs scientifiques
Anciens collaborateurs:
Dr. Doghonay Arjmand – 01.09.2019 – Associate Professor - Mälardalen University, Sweden
Publications
Publications Infoscience
Publications
MATHICSE Technical Report : Explicit stabilized multirate method for stiff stochastic differential equations
2020-10-29MATHICSE Technical Report : Drift Estimation of Multiscale Diffusions Based on Filtered Data
2020-09-28MATHICSE Technical Report : Analytical and numerical study of a modified cell problem for the numerical homogenization of multiscale random fields
2020-07-21MATHICSE technical Report : Stabilized explicit multirate methods for stiff differential equations
2020-06-01MATHICSE Technical Report : A posteriori error analysis of a local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations
2020-04-15MATHICSE technical Report : A parabolic local problem with exponential decay of the resonance error for numerical homogenization
2020-04-15Effective Models and Numerical Homogenization for Wave Propagation in Heterogeneous Media on Arbitrary Timescales
Foundations Of Computational Mathematics. 2020-03-16. DOI : 10.1007/s10208-020-09456-x.Ensemble Kalman Filter For Multiscale Inverse Problems
Multiscale Modeling & Simulation. 2020-01-01. DOI : 10.1137/20M1348431.Novel corrector problems with exponential decay of the resonance error for numerical homogenization
Lausanne, EPFL, 2020. DOI : 10.5075/epfl-thesis-7750.Numerical methods for deterministic and stochastic differential equations with multiple scales and high contrasts
Lausanne, EPFL, 2020. DOI : 10.5075/epfl-thesis-7445.Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration
Statistics and Computing. 2020. DOI : 10.1007/s11222-020-09926-w.MATHICSE Technical Report : An elliptic local problem with exponential decay of the resonance error for numerical homogenization
2020A Bayesian numerical homogenization method for elliptic multiscale inverse problems
SIAM/ASA Journal on uncertainty Quantification. 2020. DOI : 10.1137/18M1187891.MATHICSE Technical Report : Ensemble Kalman filter for multiscale inverse problems
2019-08-15Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems
2019-07-28. p. 2138-2140.Approximation of high order homogenized wave equations for long time wave propagation
2019-07-28. p. 2167-2170.A local discontinuous Galerkin gradient discretization method for linear and quasilinear elliptic equations
Esaim-Mathematical Modelling And Numerical Analysis-Modelisation Mathematique Et Analyse Numerique. 2019-07-09.MATHICSE Technical Report : Effective models and numerical homogenization for wave propagation in heterogeneous media on arbitrary timescales
2019-05-28Accelerated convergence to equilibrium and reduced asymptotic variance for Langevin dynamics using Stratonovich perturbations
Comptes Rendus Mathematique. 2019-04-01. DOI : 10.1016/j.crma.2019.04.008.MATHICSE Technical Report : Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems
2019-03-30MATHICSE Technical Report: Accelerated convergence to equilibrium and reduced asymptotic variance for Langevin dynamics using Stratonovich perturbations
2019-03-07Numerical methods for wave propagation in heterogenenous media
2019. 14th International Conference on the Mathematical and Numerical Aspects of Waves.Effective equations of arbitrary order for wave propagation in periodic media
2019. 14th International Conference on the Mathematical and Numerical Aspects of Waves, Wien, Austria, August 28-30, 2019.Numerical Homogenization And Model Order Reduction For Multiscale Inverse Problems
Multiscale Modeling & Simulation. 2019-01-01. DOI : 10.1137/16M1091320.Penalization and Bayesian numerical methods for multiscale inverse problems
Lausanne, EPFL, 2019. DOI : 10.5075/epfl-thesis-9360.Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems
Comptes Rendus Mathematique. 2019. DOI : 10.1016/j.crma.2019.05.011.MATHICSE Technical Report : Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration
2018-09-05MATHICSE Technical Report : A local discontinuous Galerkin gradient discretization method for linear and quasilinear elliptic equations
2018-08-21MATHICSE Technical Report : A Bayesian numerical homogenization method for elliptic multiscale inverse problems
2018-05-29Optimal Explicit Stabilized Integrator of Weak Order 1 for Stiff and Ergodic Stochastic Differential Equations
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION. 2018. DOI : 10.1137/17M1145859.Finite element heterogeneous multiscale method for elastic waves in heterogeneous media
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. 2018. DOI : 10.1016/j.cma.2018.01.038.Effective Models for Long Time Wave Propagation in Locally Periodic Media
SIAM Journal on Numerical Analysis. 2018. DOI : 10.1137/17M113678X.MATHICSE Technical Report : FE-HMM for elastic waves in heterogeneous media
2017-11-21MATHICSE Technical Report : Optimal explicit stabilized integrator of weak order one for stiff and ergodic stochastic differential equations
2017-11-17MATHICSE Technical Report : Optimal explicit stabilized integrator of weak order one for stiff and ergodic stochastic differential equations
2017-09-08MATHICSE Technical Report : Effective models for long time wave propagation in locally periodic media
2017-07-18Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media
Lausanne, EPFL, 2017. DOI : 10.5075/epfl-thesis-7881.Optimization based methods for highly heterogeneous multiscale problems and multiscale methods for elastic waves
Lausanne, EPFL, 2017. DOI : 10.5075/epfl-thesis-7467.Spectral methods for multiscale stochastic differential equations
SIAM/ASA Journal on Uncertainty Quantification. 2017. DOI : 10.1137/16M1094117.An optimization-based numerical method for diffusion problems with sign-changing coefficients
C. R. Acad. Sci. Paris, Série I. 2017. DOI : 10.1016/j.crma.2017.02.010.A three-scale offline–online numerical method for fluid flow in porous media
Journal of Computational Physics. 2017. DOI : 10.1016/j.jcp.2017.02.006.On heterogeneous coupling of multiscale methods for problems with and without scale separation
Research in the mathematical Sciences. 2017. DOI : 10.1186/s40687-017-0118-9.Multiscale methods for wave problems in heterogenous media
Handbook of Numerical Analysis. 2017.Numerical homogenization method for parabolic advection-diffusion multiscale problems with large compressible flows
Numerische Mathematik. 2017. DOI : 10.1007/s00211-016-0854-6.A discontinuous Galerkin reduced basis numerical homogenization method for fluid flow in porous media
Siam Journal on Scientific Computing. 2017. DOI : 10.1137/15M1050690.Localized orthogonal decomposition method for the wave equation with a continuum of scales
Mathematics of Computation. 2017. DOI : 10.1090/mcom/3114.MATHICSE Technical Report : Spectral methods for multiscale stochastic differential equations
2016-09MATHICSE Technical Report : Numerical homogenization and model order reduction for multiscale inverse problems
2016-08MATHICSE Technical Report : An optimization-based numerical method for diffusion problems with sign-changing coefficients
2016-08MATHICSE Technical Report : Multiscale methods and model order reduction for flow problems in three-scale porous media
2016-07MATHICSE Technical Report : On heterogeneous coupling of multiscale methods for problems with and without scale separation
2016-07MATHICSE Technical Report : Multiscale methods for wave problems in heterogeneous media
2016-07MATHICSE Technical Report : Multiscale model reduction methods for flow in heterogeneous porous media
2016-07MATHICSE Technical Report : Effective models for the multidimensional wave equation in heterogeneous media over long time and numerical homogenization
2016-02-12An Optimization Based Coupling Method For Multiscale Problems
Multiscale Modeling & Simulation. 2016. DOI : 10.1137/15M105389X.Finite Element Heterogeneous Multiscale Method For Nonlinear Monotone Parabolic Homogenization Problems
Esaim-Mathematical Modelling And Numerical Analysis-Modelisation Mathematique Et Analyse Numerique. 2016. DOI : 10.1051/m2an/2016003.Multiscale methods for Stokes flow in heterogeneous media
Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-7135.Multiscale model reduction methods for flow in heterogeneous porous media
2016. Numerical Mathematics and Advanced Applications ENUMATH 2015, Institute of Applied Mathematics (IAM), Middle East Technical University, Ankara, Turkey, September 14 to 18, 2015. DOI : 10.1007/978-3-319-39929-4_32.On the statistical physics of chains and rods, with application to multi-scale sequence-dependent DNA modelling
Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-6977.Numerical methods for wave equation in heterogenous media
2016. Oberwolfach Workshop, Oberwolfach, March 20-26, 2016. p. 875-878. DOI : 10.4171/OWR/2016/18.Numerical experiments for multiscale problems in linear elasticity
2016. Numerical Mathematics and Advanced Applications ‐ ENUMATH 2015, Institute of Applied Mathematics (IAM), Middle East Technical University, Ankara, Turkey, September 14 to 18, 2015. It offers an overview of central recent developments in numerical analysis, computational m. p. 123-131. DOI : 10.1007/978-3-319-39929-4_13.Effective models for the multidimensional wave equation in heterogeneous media over long time and numerical homogenization
Mathematical Models and Methods in Applied Sciences. 2016. DOI : 10.1142/S0218202516500627.Numerical Approximation of Flows in Random Porous Media
Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-6860.Numerical homogenization methods for parabolic monotone problems
Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations; 2016. p. 1-38.A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media
Computer Methods in Applied Mechanics and Engineering. 2016. DOI : 10.1016/j.cma.2016.03.016.A priori error analysis of the finite element heterogeneous multiscale method for the wave equation in heterogeneous media over long time
SIAM Journal on Numerical Analysis. 2016. DOI : 10.1137/15M1025633.Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization
Numerical Methods for Partial Differential Equations. 2016. DOI : 10.1002/num.22037.MATHICSE Technical Report: An optimization based coupling method for multiscale problems
2015-12MATHICSE Technical Report: Numerical homogenization method for parabolic advection-diffusion multiscale problems with large compressible flows
2015-12MATHICSE Technical Report: Numerical homogenization methods for parabolic monotone problems
2015-12MATHICSE Technical Report: A discontinuous Galerkin reduced basis numerical homogenization method for fluid flow in porous media
2015-12MATHICSE Technical Report : A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media
2015-07MATHICSE Technical Report : A priori error analysis of the finite element heterogenenous multiscale method for the wave equation in heterogenenous media over long time
2015-06Stabilized Numerical Methods for Stochastic Differential Equations driven by Diffusion and Jump-Diffusion Processes
Lausanne, EPFL, 2015. DOI : 10.5075/epfl-thesis-6771.Numerical homogenization methods for advection-diffusion and nonlinear monotone problems with multiple scales
Lausanne, EPFL, 2015. DOI : 10.5075/epfl-thesis-6769.Numerical Mathematics and Advanced Applications - ENUMATH 2013
2015A Petrov-Galerkin reduced basis approximation of the Stokes equation in parameterized geometries
Comptes Rendus Mathematique. 2015. DOI : 10.1016/j.crma.2015.03.019.Reduced basis heterogeneous multiscale methods
2015. Euromech Colloquium 559 - Multi-scale computational methods for bridging scales in materials and structures, Eindhoven, The Netherlands, February 23-25, 2015.Reduced basis techniques for multiscale methods
2015. Oberwolfach Workshop, Oberwolfach, January 11-17, 2015. p. 95-98. DOI : 10.4171/OWR/2015/2.The role of numerical integration in numerical homogenization
ESAIM: Proceedings; 2015. p. 1-20.Adaptive polynomial approximation by means of random discrete least squares
2015. ENUMATH 2013, Lausanne, August 26-30, 2013. p. 547-554. DOI : 10.1007/978-3-319-10705-9_54.A reduced basis localized orthogonal decomposition
Journal of Computational Physics. 2015. DOI : 10.1016/j.jcp.2015.04.016.Linearized numerical homogenization method for nonlinear monotone parabolic multiscale problems
Multiscale Modeling and Simulation. 2015. DOI : 10.1137/140975504.An optimization-based multiscale coupling method
Communication in Mathematical Sciences. 2015. DOI : 10.4310/CMS.2015.v13.n6.a13.Long time accuracy of Lie-Trotter splitting methods for Langevin dynamics
SIAM Journal on Numerical Analysis. 2015. DOI : 10.1137/140962644.Multiscale adaptive method for Stokes fow in heterogenenous media
2015. Enumath 2013, EPFL, Lausanne, Switzerland, August 26-30,2013.Reduced basis numerical homogenization method for the multiscale wave equation
2015. Enumath 2013, EPFL,Lausanne, Switzerland, August 26-30,2013. p. 397-405.Improved stabilized multilevel Monte Carlo method for stiff stochastic differential equations
2015. Enumath 2013, EPFL, Lausanne, Switzerland, August 26-30,2013.An adaptive finite element heterogeneous multiscale method for Stokes flow in porous media
Multiscale Modeling and Simulation. 2015. DOI : 10.1137/130950136.Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems
Discrete and Continuous Dynamical Systems. 2015. DOI : 10.3934/dcdss.2015.8.91.Numerical homogenization
Encyclopedia of Applied and Computational Mathematics; Berlin: Springer, 2015. p. 1066-1074.Fully discrete analysis of the heterogeneous multiscale method for elliptic problems with multiple scales
IMA, Journal of Numerical Analysis. 2015. DOI : 10.1093/imanum/drt066.Explicit stabilized Runge-Kutta methods
Encyclopedia of Applied and Computational Mathematics; Berlin: Springer, 2015. p. 460-468.MATHICSE Technical Report : Finite element heterogeneous multiscale method for nonlinear monotone parabolic homogenization problems
2014-07-01Numerical techniques for differential equations with multiple scales in space or time
2014. Oberwolfach Workshop, Oberwolfach. p. 2457-2459. DOI : 10.4171/OWR/2014/43.Numerical methods for multiscale parabolic and hyperbolic problems
2014. Oberwolfach Workshop, Oberwolfach. p. 1631-1633. DOI : 10.4171/OWR/2014/30.Reduced order modelling numerical homogenization
Philosophical Transactions of the Royal Society A. 2014. DOI : 10.1098/rsta.2013.0388.Finite element heterogeneous multiscale method for the wave equation: long-time effects
Multiscale Modeling and Simulation. 2014. DOI : 10.1137/13094195X.High order numerical approximation of the invariant measure of ergodic SDEs
Siam Journal on Numerical Analysis. 2014. DOI : 10.1137/130935616.An online-offline homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems
International Journal for Numerical Methods in Engineering. 2014. DOI : 10.1002/nme.4682.Enseignement & Phd
Enseignement
Mathematics