Matthias Ruf
EPFL SB MATH
MA A1 354 (Bâtiment MA)
Station 8
CH-1015 Lausanne
Web site: Site web: https://math.epfl.ch/
Web site: Site web: https://sma.epfl.ch/
Biographie
2019 - présent Instructeur à l'EPFL2017 - 2019 Post-doc à l'ULB (dans le groupe de Prof. A. Gloria)
2013 - 2017 Doctorant à TU Munich (directeur de thèse: Prof. M. Cicalese)
Thèse: Discrete-to-continuum limits and stochastic homogenization of ferromagnetic surface energies
2008 - 2013 Etudiant (en mathématique) à TU Munich
Publications
23. On the Lavrentiev gap for convex, vectorial integral functionals (with L. Koch and M. Schäffner) (2023) [preprint]22. New homogenization results for convex integral functionals and their Euler-Lagrange equations (with M. Schäffner) (2023) [preprint]
21. Stochastic homogenization of functionals defined on finite partitions (with A. Bach) (2023) [preprint]
20. A spectral ansatz for the long-time homogenization of the wave equation (with M. Duerinckx and A. Gloria) (2023) [preprint]
19. Stochastic homogenization of degenerate integral functionals with linear growth (with C.I. Zeppieri). Calc. Var. PDE, 62:138 (2023) [preprint]
18. A classical S2 spin system with discrete out-of-plane anisotropy: variational analysis at surface and vortex scalings (with M. Cicalese and G. Orlando), Nonlinear Anal., 231 (2023), 112929 [preprint]
17. Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations (with T. Ruf). J. Ec. Polytech. Math., 10 (2023), 253-303 [preprint]
16. Fluctuation estimates for the multi-cell formula in stochastic homogenization of partitions (with A. Bach), Calc. Var. PDE , 61:84 (2022) [preprint]
15. The N-clock model: Variational analysis for fast and slow divergence rates of N (with M. Cicalese and G. Orlando), Arch. Ration. Mech. Anal., 245 (2022), 1135-1196 [preprint]
14. Coarse graining and large-N behavior of the d-dimensional N-clock model (with M. Cicalese and G. Orlando), Interfaces Free Bound., 23 (2021), 323-351 [preprint]
13. Emergence of concentration effects in the variational analysis of the N-clock model (with M. Cicalese and G. Orlando), Comm. Pure Appl. Math., 75 (2022), 2279-2342 [preprint]
12. Random finite-difference discretizations of the Ambrosio-Tortorelli functional with optimal mesh size (with A. Bach and M. Cicalese), SIAM J. Math. Anal., 53 (2021), no. 2, 2275-2318 [preprint]
11. From statistical polymer physics to nonlinear elasticity (with M. Cicalese and A. Gloria), Arch. Ration. Mech. Anal., 236 (2020), 1127-1215 [preprint]
10. Loss of strong ellipticity through homogenization in 2D linear elasticity: a phase diagram (with A. Gloria), Arch. Ration. Mech. Anal., 231 (2019), no. 2, 845-886 [preprint]
9. Discrete stochastic approximations of the Mumford-Shah functional, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), no. 4, 887-937 [preprint]
8. Motion of discrete interfaces in low-contrast random environments, ESAIM: Control Optim. Calc. Var., 24 (2018), no.3, 1275-1301 [preprint]
7. Hemihelical local minimizers in prestrained elastic bi-strips (with M. Cicalese and F. Solombrino), Z. Angew. Math. Phys. (2017), 68:122 [preprint]
6. Continuum limit and stochastic homogenization of discrete ferromagnetic thin films (with A. Braides and M. Cicalese), Anal. PDE, 11 (2018), no.2, 499-553 [preprint]
5. On the continuity of functionals defined on partitions, Adv. Calc. Var., 11 (2017), no. 11, 335-339 [preprint]
4. On global and local minimizers of prestrained thin elastic rods (with M. Cicalese and F. Solombrino), Calc. Var. PDE (2017), 56:115 [preprint]
3. Discrete spin systems on random lattices at the bulk scaling (with M. Cicalese), Disc. Cont. Dyn. Sys.-S, 10 (2017), no. 1, 101-117 [preprint]
2. Chirality transitions in frustrated S2-valued spin systems (with M. Cicalese and F. Solombrino), Math. Models Methods Appl. Sci., 26 (2016), no. 8, 1481-1529 [preprint]
1. Domain formation in magnetic polymer composites: an approach via stochastic homogenization (with R. Alicandro and M. Cicalese), Arch. Ration. Mech. Anal., 218 (2015), no. 2, 945-984 [preprint]
Enseignement & Phd
Enseignement
Mathematics
Cours
Topics in complex analysis
Le but de ce cours est de traiter les sujets sélectionnés de l'analyse complexe. Nous allons nous concentrer sur les fonctions holomorphes d'une variable. A la fin, nous discuterons également des fonctions holomorphes en plusieurs variables.
Calculus of variations
Introduction au Calcul des Variations classique et à une sélection de techniques modernes. Nous nous concentrons sur les fonctionelles intégrales définies sur les espaces de Sobolev.