Profile picture

Anne-Sophie Chauvin

EPFL SB SCGC-GE
CP1 268 (Amphipole UNIL)
Rte de la Sorge
1015 Lausanne

Mission

Anne-Sophie Chauvin is involved in the fields of chemistry, and supramolecular chemistry, especially with f elements, with a focus on developing novel coordination polymers with actinides and exploring luminescence properties with lanthanides for biological and technological applications (such as invisible inks).
In parallel, she is also developing palladium-based metallacages, further expanding her interest in the construction of functional supramolecular architectures through coordination-driven self-assembly.
She is teaching General and Analytical Chemistry to first-year Pharmacy and Biology students at UNIL, and overseeing practical sessions for students in chemistry, pharmacy, and biology.
She is elected at the FSB Faculty Council and was member of the EPFL Assembly (AE) for 6 years, until 2018. She was member of the Management committee of the Cost CM 1006 action entitled Eufen: European F-Element Network and Fellow of the Royal Society of Chemistry (FRSC). She is Member of the Swiss Chemical Society (SCS).
 Anne-Sophie Chauvin began her academic journey at the University Paris V-René Descartes in France, where she earned her PhD in bioinorganic chemistry, focusing on mimetic complexes of Nitrile Hydratase's active site under the guidance of Prof. Jean-Claude Chottard. After completing a postdoctoral stay at the University of Geneva with Prof. Alexandre Alexakis, where she researched the determination of the absolute configuration of chiral alcohols  by 31-P NMR , she continued her work in supramolecular chemistry in Prof. Jean-Claude G. Bünzli's group. Here, her research centered on designing ligands that form water-soluble complexes with luminescent lanthanides for biological applications. She was appointed part-time lecturer in 2001, and in 2006, she obtained the habilitation to direct research (HDR) from the University René Descartes. In 2007, she became Maître d'Enseignement et de Recherche at EPFL. Her later research interests have included photovoltaics and organic dyes for dye-sensitized solar cells (DSSC) at the Laboratory for Photonics and Interfaces (LPI) headed by Pr. Michaël Graëtzel, as well as developing invisible inks based on lanthanide complexes. Since 2014, with the arrival of Dr Marinella Mazzanti at EPFL she has returned to studying lanthanide and actinide chemistry, focusing on luminescence and coordination polymers involving actinides (U(IV), U(V), Th(IV)). In March 2025, she joined the group of Kay Severin to further her work in supramolecular chemistry and she is developing Pd metallacages.

Alumni

Dr Steve Comby
Dr Julien Andrès
Dr Aurélien Willauer
Dr Andrei Andreichenko

Accessing Carbon, Boron and Germanium Spiro Stereocentres in a Unified Catalytic Enantioselective Approach

Y.-X. CaoA.-S. ChauvinS. TongL. AlamaN. Cramer

NATURE CATALYSIS. 2025. DOI : 10.1038/s41929-025-01352-3.

Peptide‐Carbazolyl Cyanobenzene Conjugates: Enabling Biomolecule Functionalization via Photoredox and Energy Transfer Catalysis

X.-Y. LuiW. CaiA.-S. ChauvinB. FierzJ. Waser

Angewandte Chemie. 2025. DOI : 10.1002/ange.202507602.

Coordination polymers: from uranium(IV) and thorium(IV) to non-uranyl U(V) and U(VI)

A. Andreichenko / A.-S. ChauvinM. Mazzanti (Dir.)

Lausanne, EPFL, 2025. DOI : 10.5075/epfl-thesis-11189.

Peptide-Carbazolyl Cyanobenzene Conjugates: Enabling Biomolecule Functionalization via Photoredox and Energy Transfer Catalysis

X.-Y. LuiW. CaiA.-S. ChauvinB. FierzJ. Waser

2024

Multielectron Redox Chemistry of Uranium by Accessing the plus II Oxidation State and Enabling Reduction to a U(I) Synthon

M. KeenerR. A. K. ShivaraamT. RajeshkumarM. TricoireR. Scopelliti  et al.

Journal Of The American Chemical Society. 2023. DOI : 10.1021/jacs.3c05626.

Uranium(IV) and Thorium(IV) Coordination Polymers Based on Tritopic Carboxylic Acids

A. AndreichenkoA. R. WillauerT. SchertenleibA. CureR. Scopelliti  et al.

Inorganic Chemistry. 2023. DOI : 10.1021/acs.inorgchem.3c00881.

Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization

Y. RaoC. T. PalumboA. VenkateshM. KeenerG. Stevanato  et al.

Journal Of Physical Chemistry C. 2022. DOI : 10.1021/acs.jpcc.2c01721.

Structure, reactivity and luminescence studies of triphenylsiloxide complexes of tetravalent lanthanides

A. R. WillauerI. DouairA.-S. ChauvinF. Fadaei-TiraniJ.-C. G. Bunzli  et al.

Chemical Science. 2022. DOI : 10.1039/d1sc05517h.

Stabilizing Unusual Oxidation States of Lanthanides in Molecular Complexes: Synthesis, Properties, and Reactivity

A. R. Willauer / M. MazzantiA.-S. Chauvin (Dir.)

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-9294.

Synthesis and Characterization of Water Stable Uranyl(V) Complexes

R. FaizovaF. Fadaei‐TiraniA. ChauvinM. Mazzanti

Angewandte Chemie International Edition. 2021. DOI : 10.1002/anie.202016123.

Vascular-targeted micelles as a specific MRI contrast agent for molecular imaging of fibrin clots and cancer cells

V. VorobievS. AdriouachL. A. CroweS. LengletA. Thomas  et al.

European Journal Of Pharmaceutics And Biopharmaceutics. 2021. DOI : 10.1016/j.ejpb.2020.11.017.

Colorimetry of Luminescent Lanthanide Complexes

J. AndresA.-S. Chauvin

Molecules. 2020. DOI : 10.3390/molecules25174022.

A Factor Two Improvement in High-Field Dynamic Nuclear Polarization from Gd(III) Complexes by Design

G. StevanatoD. J. KubickiG. MenzildjianA.-S. ChauvinK. Keller  et al.

Journal Of The American Chemical Society. 2019. DOI : 10.1021/jacs.9b03723.

Lanthanides in Solar Energy Conversion

J.-C. G. BünzliA.-S. Chauvin

Handbook on the Physics and Chemistry of Rare Earths; Amsterdam: Elsevier Science B.V., 2014. p. 169 - 281.

Energy transfer in coumarin-sensitised lanthanide luminescence: investigation of the nature of the sensitiser and its distance to the lanthanide ion

J. AndresA.-S. Chauvin

Physical Chemistry Chemical Physics. 2013. DOI : 10.1039/c3cp52279b.

New sensitizers for dye-sensitized solar cells featuring a carbon-bridged phenylenevinylene

X. ZhuH. TsujiA. YellaA.-S. ChauvinM. Graetzel  et al.

Chemical Communications (ChemComm). 2013. DOI : 10.1039/c2cc37124c.

Editorial - Solar Energy Harvesting

A.-S. ChauvinM. Graetzel

Chimia. 2013.

Synthesis and cell localization of self-assembled dinuclear lanthanide bioprobes

A.-S. ChauvinF. ThomasB. SongC. D. B. VandevyverJ.-C. G. Buenzli

Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences. 2013. DOI : 10.1098/rsta.2012.0295.

From Luminescent Lanthanide Complexes to Color Reproduction and Optical Document Security with Invisible Luminescent Inks

J. Andrès / A.-S. ChauvinR. Hersch (Dir.)

Lausanne, EPFL, 2012. DOI : 10.5075/epfl-thesis-5605.

Lighting-up cancerous cells and tissues with lanthanide luminescence

J.-C. BünzliC. VandevyverA.-S. ChauvinM. GijsH.-A. Lehr

CHIMIA. 2011. DOI : 10.2533/chimia.2011.361.

6-Phosphoryl Picolinic Acids as Europium and Terbium Sensitizers

J. AndresA.-S. Chauvin

Inorganic Chemistry. 2011. DOI : 10.1021/ic200983y.

Bioconjugated lanthanide luminescent helicates as multilabels for lab-on-a-chip detection of cancer biomarkers

V. Fernandez-MoreiraB. SongV. SivagnanamA.-S. ChauvinC. D. B. Vandevyver  et al.

Analyst. 2010. DOI : 10.1039/b922124g.

Increasing the efficiency of lanthanide luminescent bioprobes: bioconjugated silica nanoparticles as markers for cancerous cells

S. V. EliseevaB. SongC. D. B. VandevyverA.-S. ChauvinJ. B. Wacker  et al.

New Journal Of Chemistry. 2010. DOI : 10.1039/c0nj00440e.

Multiphoton-Excited Luminescent Lanthanide Bioprobes: Two- and Three-Photon Cross Sections of Dipicolinate Derivatives and Binuclear Helicates

S. V. EliseevaG. AuböckF. van MourikA. CannizzoB. Song  et al.

The Journal of Physical Chemistry B. 2010. DOI : 10.1021/jp9090206.

Sensitized near-IR luminescence of lanthanide complexes based on push-pull diketone derivatives

N. S. BaekY. H. KimY. K. EomJ. H. OhH. K. Kim  et al.

Dalton Transactions. 2010. DOI : 10.1039/b915893f.

Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime

J.-C. G. BuenzliA.-S. ChauvinH. K. KimE. DeitersS. V. Eliseeva

Coordination Chemistry Reviews. 2010. DOI : 10.1016/j.ccr.2010.04.002.

Europium Complexes of Tris(dipicolinato) Derivatives Coupled to Methylumbelliferone: A Double Sensitization

J. AndresA.-S. Chauvin

European Journal Of Inorganic Chemistry. 2010. DOI : 10.1002/ejic.201000126.

Luminescent Bimetallic Lanthanide Bioprobes for Cellular Imaging with Excitation in the Visible-Light Range

E. DeitersB. SongA.-S. ChauvinC. D. B. VandevyverF. Gumy  et al.

Chemistry - A European Journal. 2009. DOI : 10.1002/chem.200801868.

Luminescent Lanthanide Helicates Self-Assembled from Ditopic Ligands Bearing Phosphonic Acid or Phosphoester Units

A.-S. ChauvinS. CombyM. BaudC. De PianoC. Duhot  et al.

Inorganic Chemistry. 2009. DOI : 10.1021/ic901424w.

Time-resolved luminescence microscopy of bimetallic lanthanide helicates in living cells

B. SongC. D. B. VandevyverA.-S. ChauvinJ.-C. G. Bünzli

Org. Biomol. Chem.. 2008. DOI : 10.1039/b811427g.

Lanthanide Bimetallic Helicates for in Vitro Imaging and Sensing

J.-C. G. BünzliA.-S. ChauvinC. D. VandevyverB. SongS. Comby

Annals of the New York Academy of Sciences. 2008. DOI : 10.1196/annals.1430.010.

A Versatile Ditopic Ligand System for Sensitizing the Luminescence of Bimetallic Lanthanide Bio-Imaging Probes

A.-S. ChauvinS. CombyB. SongC. D. B. VandevyverJ.-C. G. Bünzli

Chemistry - A European Journal. 2008. DOI : 10.1002/chem.200701357.

Autoxidation of a 4-iminoimidazolidin-2-one with a tertiary 5-hydrogen to its 5-hydroxy derivative

V. T. AngelovaN. G. VassilevA.-S. ChauvinA. H. KoedjikovP. M. Ivanov  et al.

Arkivoc. 2008. DOI : 10.3998/ark.5550190.0009.b02.

Remarkable Tuning of the Photophysical Properties of Bifunctional Lanthanide tris(Dipicolinates) and its Consequence on the Design of Bioprobes

A.-L. GassnerC. DuhotJ.-C. G. BünzliA.-S. Chauvin

Inorganic Chemistry. 2008. DOI : 10.1021/ic800842f.

Luminescent lanthanides bioprobes emitting in the visible and/or near-infrared ranges

S. Comby / J.-C. BünzliA.-S. Chauvin (Dir.)

Lausanne, EPFL, 2008. DOI : 10.5075/epfl-thesis-4052.

A versatile method for quantification of DNA and PCR products based on time-resolved EuIII luminescence

B. SongC. D. B. VandevyverE. DeitersA.-S. Chauvinl. Hemmilä  et al.

Analyst. 2008. DOI : 10.1039/b807959e.

Effect of the length of polyoxyethylene substituents on luminescent bimetallic lanthanide bioprobes

E. DeitersB. SongA.-S. ChauvinC. D. B. VandevyverJ.-C. G. Bünzli

New Journal of Chemistry. 2008. DOI : 10.1039/b800516h.

Synthesis of octa(1,1,3,3-tetramethylbutyl)octakis (dimethylphosphinoylmethyleneoxy)calix[8]arene and its application in the synergistic solvent extraction and separation of lanthanoids

E. TashevM. AtanassovaS. VarbanovT. ToshevaS. Shenkov  et al.

Separation And Purification Technology. 2008. DOI : 10.1016/j.seppur.2008.09.011.

Luminescent lanthanide bimetallic triple-stranded helicates as potential cellular imaging probes

C. D. B. VandevyverA.-S. ChauvinS. CombyJ.-C. G. Bünzli

Chemical Communications (ChemComm). 2007. DOI : 10.1039/B701482A.

Synthesis and characterization of partially substituted at lower rim phosphorus containing calix(4)arenes

E. TashevT. ToshevaS. ShenkovA.-S. ChauvinV. Lachkova  et al.

Supramolecular Chemistry. 2007. DOI : 10.1080/10610270601105703.

Lanthanide Complexes with a Calix[8]arene Bearing Phosphinoyl Pendant Arms

L. N. PuntusA.-S. ChauvinS. VarbanovJ.-C. G. Bünzli

European Journal of Inorganic Chemistry. 2007. DOI : 10.1002/ejic.200601180.

A Polyoxyethylene-Substituted Bimetallic Europium Helicate for Luminescent Staining of Living Cells

A.-S. ChauvinS. CombyB. SongC. D. B. VandevyverF. Thomas  et al.

Chemistry - A European Journal. 2007. DOI : 10.1002/chem.200700883.

Exploring the potential of europium(III) luminescence for the detection of phase transitions in ionic liquid crystals

J. KocherF. GumyA.-S. ChauvinJ.-C. G. Bünzli

Journal of Materials Chemistry. 2007. DOI : 10.1039/b614036j.

New Opportunities for Lanthanide Luminescence

J.-C. G. BunzliS. CombyA.-S. ChauvinC. D. B. Vandevyver

Journal of Rare Earths. 2007. DOI : 10.1016/S1002-0721(07)60420-7.

Non-Cytotoxic, Bifunctional EuIII and TbIII Luminescent Macrocyclic Complexes for Luminescence Resonant Energy- Transfer Experiments

A.-C. FerrandD. ImbertA.-S. ChauvinC. D. B. VandevyverJ.-C. G. Bünzli

Chemistry - A European Journal. 2007. DOI : 10.1002/chem.200700819.

Stable 8-hydroxyquinolinate-based podates as efficient sensitizers of lanthanide near-infrared luminescence

S. CombyD. ImbertA.-S. ChauvinJ.-C. G. Bunzli

Inorganic chemistry. 2006. DOI : 10.1021/ic0515249.

Fluorinated β-Diketones for the Extraction of Lanthanide Ions: Photophysical Properties and Hydration Numbers of Their EuIII Complexes

A.-S. ChauvinF. GumyI. MatsubayashiY. HasegawaJ.-C. G. Bünzli

European Journal of Inorganic Chemistry. 2006. DOI : 10.1002/ejic.200500849.

Use of Dipicolinate-Based Complexes for Producing Ion-Imprinted Polystyrene Resins for the Extraction of Yttrium-90 and Heavy Lanthanide Cations

A.-S. ChauvinJ.-C. G. BünzliF. BochudR. ScopellitiP. Froidevaux

Chemistry - A European Journal. 2006. DOI : 10.1002/chem.200501370.

Lanthanide 8-hydroxyquinoline-based podates with efficient emission in the NIR range

D. ImbertS. CombyA.-S. ChauvinJ.-C. G. Buenzli

Chemical Communications (ChemComm). 2005. DOI : 10.1039/B416575F.

Influence of Anionic Functions on the Coordination and Photophysical Properties of Lanthanide(III) Complexes with Tridentate Bipyridines

S. CombyD. ImbertA.-S. ChauvinJ.-C. G. BuenzliL. J. Charbonniere  et al.

Inorganic Chemistry. 2004. DOI : 10.1021/ic049118x.

Cobalt(II), nickel(II), copper(II), and zinc(II) complexes with a p-tert-butylcalix[4]arene fitted with phosphinoyl pendant arms

V. VidevaA.-S. ChauvinS. VarbanovC. BauxR. Scopelliti  et al.

European Journal of Inorganic Chemistry. 2004. DOI : 10.1002/ejic.200300858.

Europium and Terbium tris(Dipicolinates) as Secondary Standards for Quantum Yield Determination

A.-S. ChauvinF. GumyD. ImbertJ.-C. G. Buenzli

Spectroscopy Letters. 2004. DOI : 10.1081/SL-120039700.

Tuning the keto equilibrium in 4-substituted dipicolinic acid derivatives

A.-S. ChauvinS. GrasJ.-C. G. Bunzli

Organic & Biomolecular Chemistry. 2003. DOI : 10.1039/b211267c.

General chemistry for students enrolled in a life sciences curriculum

J.-C. G. BunzliE. FernandesD. ImbertA.-S. ChauvinF. Emmenegger  et al.

CHIMIA. 2003. DOI : 10.2533/000942903777679587.

Self-assembled triple-stranded lanthanide dimetallic helicates with a ditopic ligand derived from bis(benzimidazole)pyridine and featuring an (4-isothiocyanatophenyl)ethynyl substituent

R. TripierM. HollensteinM. ElhabiriA.-S. ChauvinG. Zucchi  et al.

Helvetica Chimica Acta. 2002. DOI : 10.1002/1522-2675(200207)85:7<1915::AID-HLCA1915>3.0.CO;2-N.

A new versatile methodology for the synthesis of 4-halogenated 6-diethylcarbamoylpyridine-2-carboxylic acids

A. S. ChauvinR. TripierJ. C. G. Bunzli

Tetrahedron Letters. 2001. DOI : 10.1016/S0040-4039(01)00392-6.

A dirigé les thèses EPFL de

Julien Alexandre Andres

Steve Comby, Aurélien René Willauer

Cours

Approfondissements en chimie analytique (pour PHA)

UNIL-132

Ce cours est un complément au cours de chimie générale et analytique II (UNIL 102) dispensé aux biologistes et pharmaciens. Il est donné uniquement aux étudiants de pharmacie. Il permet d'aller plus loin dans les notions de chimie analytique

Chimie TP I

CH-108(a)

Familiariser l'étudiant avec le travail au laboratoire. Travailler de façon quantitative et/ou qualitative. TP réalisés en relation avec les cours de chimie de 1ere année et complémentaires avec le contenu des enseignements TP2 dispensés au semestre suivant

Chimie TP II

CH-109(a)

Familiariser l'étudiant aux principes et à la rigueur de l'analyse quantitative. Introduction aux analyses quantitatives classiques. Apprendre à effectuer un travail quantitatif. Exposer les principes généraux de la chimie analytique quantitative. Rédiger un rapport scientifique

Chimie générale et analytique I (TP pour BIO)

UNIL-103

L'objectif de ces travaux pratiques est de familiariser l'étudiant-e avec les techniques de laboratoire de base et avec les méthodes d'analyse classiques et instrumentales. Les TP sont également une illustration des principes de chimie décrits dans les cours de Chimie générale et analytique I et II.

Chimie générale et analytique I (TP pour PHA)

UNIL-104

L'objectif de ces travaux pratiques est de familiariser l'étudiant-e avec les techniques de laboratoire de base et avec les méthodes d'analyse classiques et instrumentales. Les TP sont également une illustration des principes de chimie décrits dans les cours de Chimie générale et analytique I et II

Chimie générale et analytique I (pour BIO+PHA)

UNIL-101

Acquérir les notions élémentaires pour comprendre l'impact de la chimie au quotidien du biologiste ou du pharmacien, en particulier en ce qui concerne la compréhension des phénomènes essentiels de la Vie (respiration, activité cellulaire...)

Chimie générale et analytique II (TP pour PHA)

UNIL-105

Ces travaux pratiques sont la suite des travaux pratiques TP I donnés au semestre d'automne.

Chimie générale et analytique II (pour BIO+PHA)

UNIL-102

Cette formation est la suite du cours de chimie générale et analytique I. Elle vise à donner aux biologistes et pharmaciens une large ouverture sur la chimie et à appliquer les notions fondamentales acquises au premier semestre.