Joaquim Loizu
Nationalité: Spain
EPFL SB SPC-TH
PPB 215 (Bâtiment PPB)
Station 13
1015 Lausanne
+41 21 693 65 46
Office: PPB 215
EPFL › SB › SPC › SPC-TH
Site web: https://spc.epfl.ch/
+41 21 693 87 12
EPFL › SB › SB-SPH › SPH-ENS
Site web: https://sph.epfl.ch/
2025
Magnetic shear effects on ballooning turbulence in the boundary of fusion devices
Physics of Plasmas. 2025. Vol. 32, num. 10. DOI : 10.1063/5.0282485.Turnstile flux as a measure for chaotic transport in magnetic confinement fusion devices
Chaos: An Interdisciplinary Journal of Nonlinear Science. 2025. Vol. 35, num. 7, p. 073129. DOI : 10.1063/5.0275878.Measurements of radial neutral density profiles from Balmer-α emission in Wendelstein 7-X
Plasma Physics and Controlled Fusion. 2025. Vol. 67, num. 5, p. 055045. DOI : 10.1088/1361-6587/add375.Sawtooth crash in tokamak as a sequence of multi-region relaxed MHD equilibria
Physics of Plasmas. 2025. Vol. 32, num. 5, p. 1 - 13. DOI : 10.1063/5.0260347.Electron trapping in gyrotron electron guns: Validation of the FENNECS code with the T-REX experiment
Physics of Plasmas. 2025. Vol. 32, num. 5. DOI : 10.1063/5.0267466.Efficient single-stage optimization of islands in finite-β stellarator equilibria
Physics of Plasmas. 2025. Vol. 32, num. 1, p. 012504. DOI : 10.1063/5.0226402.2024
Constructing nested coordinates inside strongly shaped toroids using an action principle
Journal of Plasma Physics. 2024. Vol. 90, num. 6, p. 905900614. DOI : 10.1017/S0022377824001119.Direct prediction of saturated neoclassical tearing modes in slab using an equilibrium approach
Plasma Physics and Controlled Fusion. 2024. DOI : 10.1088/1361-6587/ad97dd.Overview of the first Wendelstein 7-X long pulse campaign with fully water-cooled plasma facing components
Nuclear Fusion. 2024. Vol. 64, num. 11, p. 112002. DOI : 10.1088/1741-4326/ad2f4d.Simplified and Flexible Coils for Stellarators using Single-Stage Optimization
Physics of Plasmas. 2024. Vol. 31, p. 112501. DOI : 10.1063/5.0226688.FENNECS: a novel particle-in-cell code for simulating the formation of magnetized non-neutral plasmas trapped by electrodes of complex geometries
Computer Physics Communications. 2024. Vol. 303, p. 109268. DOI : 10.1016/j.cpc.2024.109268.Design and First Tests of the Trapped Electrons Experiment T-REX
Review of Scientific Instruments. 2024. Vol. 95, num. 10. DOI : https://doi.org/10.1063/5.0212127.Parallel flows as a key component to interpret Super-X divertor experiments
Nuclear Fusion. 2024. Vol. 64, num. 4, p. 046019. DOI : 10.1088/1741-4326/ad2a2a.Global fluid simulation of plasma turbulence in stellarators with the GBS code
Nuclear Fusion. 2024. Vol. 64, num. 7, p. 076057. DOI : 10.1088/1741-4326/ad4ef5.2023
Erratum: Structure of pressure-gradient-driven current singularity in ideal magnetohydrodynamic equilibrium (vol 65, 034008, 2023)
Plasma Physics And Controlled Fusion. 2023. Vol. 65, num. 12, p. 129601. DOI : 10.1088/1361-6587/ad0852.Erratum: “Numerical study of δ-function current sheets arising from resonant magnetic perturbations” [Phys. Plasmas 29, 032513 (2022)]
Physics Of Plasmas. 2023. Vol. 30, num. 11, p. 119901. DOI : 10.1063/5.0182390.Equilibrium β-limits dependence on bootstrap current in classical stellarators
Journal of Plasma Physics. 2023. Vol. 89, num. 5, p. 905890508. DOI : 10.1017/S0022377823000910.Nonlinear saturation of resistive tearing modes in a cylindrical tokamak with and without solving the dynamics
Journal of Plasma Physics. 2023. Vol. 89, num. 5, p. 905890507. DOI : 10.1017/S0022377823000934.Validation of GBS plasma turbulence simulation of the TJ-K stellarator
Plasma Physics And Controlled Fusion. 2023. Vol. 65, num. 8, p. 085018. DOI : 10.1088/1361-6587/ace4f3.On the relationship between the multi-region relaxed variational principle and resistive inner-layer theory
Plasma Physics and Controlled Fusion. 2023. Vol. 65, p. 075004. DOI : 10.1088/1361-6587/acc96e.First self-consistent simulations of trapped electron clouds in a gyrotron gun and comparison with experiments
Physics of Plasmas. 2023. Vol. 30, num. 3, p. 030702. DOI : 10.1063/5.0136340.Structure of pressure-gradient-driven current singularity in ideal magnetohydrodynamic equilibrium
Plasma Physics and Controlled Fusion. 2023. Vol. 65, p. 034008. DOI : 10.1088/1361-6587/acb382.Plasma turbulence simulations in a diverted tokamak with applied resonant magnetic perturbations
Nuclear Fusion. 2023. Vol. 63, num. 7, p. 076005. DOI : 10.1088/1741-4326/acd403.2022
Self-consistent formation and steady-state characterization of trapped high-energy electron clouds in the presence of a neutral gas background
Physics of Plasmas. 2022. Vol. 29, num. 8, p. 082105. DOI : 10.1063/5.0098567.Erratum: “Unified nonlinear theory of spontaneous and forced helical resonant MHD states” [Phys. Plasmas 24, 040701 (2017)]
Physics Of Plasmas. 2022. Vol. 29, num. 8, p. 089901. DOI : 10.1063/5.0111547.Nature of ideal MHD instabilities as described by multi-region relaxed MHD
Plasma Physics And Controlled Fusion. 2022. Vol. 64, num. 6, p. 065001. DOI : 10.1088/1361-6587/ac53ee.Global fluid simulation of plasma turbulence in a stellarator with an island divertor
Nuclear Fusion. 2022. Vol. 62, p. 074004. DOI : 10.1088/1741-4326/ac6ad2.Stellarator optimization for nested magnetic surfaces at finite β and toroidal current
Physics of Plasmas. 2022. Vol. 29, num. 4, p. 042505. DOI : 10.1063/5.0080809.Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X
Nuclear Fusion. 2022. Vol. 62, num. 4, p. 042022. DOI : 10.1088/1741-4326/ac2cf5.Overview of the TCV tokamak experimental programme
Nuclear Fusion. 2022. Vol. 62, num. 4, p. 042018. DOI : 10.1088/1741-4326/ac369b.Numerical study of delta-function current sheets arising from resonant magnetic perturbations
Physics Of Plasmas. 2022. Vol. 29, num. 3, p. 032513. DOI : 10.1063/5.0067898.2021
Model for current drive induced crash cycles in W7-X
Nuclear Fusion. 2021. Vol. 61, num. 12, p. 126040. DOI : 10.1088/1741-4326/ac2ab9.On the non-existence of stepped-pressure equilibria far from symmetry
Plasma Physics and Controlled Fusion. 2021. Vol. 63, num. 12, p. 125007. DOI : 10.1088/1361-6587/ac2afc.Computation of multi-region, relaxed magnetohydrodynamic equilibria with prescribed toroidal current profile
Journal of Plasma Physics. 2021. Vol. 87, num. 4, p. 905870403. DOI : 10.1017/S0022377821000520.Parallel convection and E × B drifts in the TCV snowflake divertor and their effects on target heat-fluxes
Nuclear Fusion. 2021. Vol. 61, num. 4, p. 046004. DOI : 10.1088/1741-4326/abdb93.Computation of linear MHD instabilities with Multi-region Relaxed MHD energy principle
Plasma Physics and Controlled Fusion. 2021. Vol. 63, num. 4, p. 045006. DOI : 10.1088/1361-6587/abdbd0.2020
Experimental verification of X-point potential well formation in unfavorable magnetic field direction
Nuclear Materials and Energy. 2020. Vol. 25, p. 1 - 4, 100839. DOI : 10.1016/j.nme.2020.100839.Direct prediction of nonlinear tearing mode saturation using a variational principle
Physics of Plasmas. 2020. Vol. 27, num. 7, p. 070701. DOI : 10.1063/5.0009110.Free-boundary MRxMHD equilibrium calculations using the stepped-pressure equilibrium code
Plasma Physics and Controlled Fusion. 2020. Vol. 62, num. 8, p. 084002. DOI : 10.1088/1361-6587/ab9a61.X-point potential well formation in diverted tokamaks with unfavorable magnetic field direction
Nuclear Fusion. 2020. Vol. 60, num. 5, p. 1 - 6, 054005. DOI : 10.1088/1741-4326/ab7d4f.2019
Multi-region relaxed magnetohydrodynamic stability of a current sheet
Physics of Plasmas. 2019. Vol. 26, num. 3, p. 030702. DOI : 10.1063/1.5091765.Properties of a new quasi-axisymmetric configuration
Nuclear Fusion. 2019. Vol. 59, num. 2, p. 026014. DOI : 10.1088/1741-4326/aaf604.2017
Equilibrium 𝛽-limits in classical stellarators
Journal of Plasma Physics. 2017. Vol. 83, num. 6, p. 575830601. DOI : 10.1017/S0022377817000861.A comparison between a refined two-point model for the limited tokamak SOL and self-consistent plasma turbulence simulations
Plasma Physics and Controlled Fusion. 2017. Vol. 59, num. 4, p. 044011. DOI : 10.1088/1361-6587/aa5cf9.Unified nonlinear theory of spontaneous and forced helical resonant MHD states
Physics of Plasmas. 2017. Vol. 24, num. 4, p. 040701. DOI : 10.1063/1.4979678.Scrape-off-layer current loops and floating potential in limited tokamak plasmas
Journal of Plasma Physics. 2017. Vol. 83, num. 6, p. 575830601. DOI : 10.1017/S0022377817000927.Poloidal asymmetry in the narrow heat flux feature in the TCV scrape-off layer
Physics of Plasmas. 2017. Vol. 24, num. 6, p. 062508. DOI : 10.1063/1.4985075.2016
Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code
Physics of Plasmas. 2016. Vol. 23, num. 1, p. 012507. DOI : 10.1063/1.4939881.Verification of the SPEC code in stellarator geometries
Physics of Plasmas. 2016. Vol. 23, num. 11, p. 112505. DOI : 10.1063/1.4967709.Pressure-driven amplification and penetration of resonant magnetic perturbations
Physics of Plasmas. 2016. Vol. 23, num. 5, p. 055703. DOI : 10.1063/1.4944818.The GBS code for tokamak scrape-off layer simulations
Journal of Computational Physics. 2016. Vol. 315, p. 388 - 408. DOI : 10.1016/j.jcp.2016.03.040.2015
Approaching the investigation of plasma turbulence through a rigorous verification and validation procedure: A practical examplea)
Physics of Plasmas. 2015. Vol. 22, num. 5, p. 055704. DOI : 10.1063/1.4919276.Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets
Physics of Plasmas. 2015. Vol. 22, num. 9, p. 090704. DOI : 10.1063/1.4931094.Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria
Physics of Plasmas. 2015. Vol. 22, num. 2, p. 022501. DOI : 10.1063/1.4906888.Plasma turbulence, suprathermal ion dynamics and code validation on the basic plasma physics device TORPEX
Journal of Plasma Physics. 2015. Vol. 81, num. 3, p. 345810301. DOI : 10.1017/S0022377815000161.Finite ion temperature effects on scrape-off layer turbulence
Physics of Plasmas. 2015. Vol. 22, num. 1, p. 012308. DOI : 10.1063/1.4904300.Numerical approach to the parallel gradient operator in tokamak scrape-off layer turbulence simulations and application to the GBS code
Computer Physics Communications. 2015. Vol. 188, p. 21 - 32. DOI : 10.1016/j.cpc.2014.10.020.2014
Verification methodology for plasma simulations and application to a scrape-off layer turbulence code
Physics of Plasmas. 2014. Vol. 21, num. 6, p. 062301. DOI : 10.1063/1.4879778.Three-dimensional simulations of blob dynamics in a simple magnetized torus
Physics of Plasmas. 2014. Vol. 21, num. 2, p. 022305. DOI : 10.1063/1.4864324.Effect of the limiter position on the scrape-off layer width, radial electric field and intrinsic flows
Nuclear Fusion. 2014. Vol. 54, num. 8, p. 083033. DOI : 10.1088/0029-5515/54/8/083033.Intrinsic toroidal rotation in the scrape-off layer of tokamaks
Physics of Plasmas. 2014. Vol. 21, num. 6, p. 062309. DOI : 10.1063/1.4883498.Pre-sheath density drop induced by ion-neutral friction along plasma blobs and implications for blob velocities
Physics Of Plasmas. 2014. Vol. 21, p. 012305. DOI : 10.1063/1.4862778.Aspect ratio effects on limited scrape-off layer plasma turbulence
Physics of Plasmas. 2014. Vol. 21, num. 2, p. 022303. DOI : 10.1063/1.4863956.Theory of the scrape-off layer width in inner-wall limited tokamak plasmas
Nuclear Fusion. 2014. Vol. 54, num. 4, p. 043003. DOI : 10.1088/0029-5515/54/4/043003.2013
Theory-based scaling of the SOL width in circular limited tokamak plasmas
Nuclear Fusion. 2013. Vol. 53, num. 12, p. 122001. DOI : 10.1088/0029-5515/53/12/122001.On the electrostatic potential in the scrape-off layer of magnetic confinement devices
Plasma Physics and Controlled Fusion. 2013. Vol. 55, num. 12, p. 124019. DOI : 10.1088/0741-3335/55/12/124019.Basic investigations of electrostatic turbulence and its interaction with plasma and suprathermal ions in a simple magnetized toroidal plasma
Nuclear Fusion. 2013. Vol. 53, num. 6, p. 063013. DOI : 10.1088/0029-5515/53/6/063013.Ideal ballooning modes in the tokamak scrape-off layer
Physics of Plasmas. 2013. Vol. 20, num. 5, p. 052306. DOI : 10.1063/1.4807333.Turbulent regimes in the tokamak scrape-off layer
Physics of Plasmas. 2013. Vol. 20, num. 9, p. 092308. DOI : 10.1063/1.4821597.2012
Potential of a plasma bound between two biased walls
Physics of Plasmas. 2012. Vol. 19, num. 8, p. 083507. DOI : 10.1063/1.4745863.Convective cells and blob control in a simple magnetized plasma
Physical Review Letters. 2012. Vol. 108, num. 6, p. 065005. DOI : 10.1103/PhysRevLett.108.065005.Boundary conditions for plasma fluid models at the magnetic presheath entrance
Physics of Plasmas. 2012. Vol. 19, num. 12, p. 122307. DOI : 10.1063/1.4771573.Properties of convective cells generated in magnetized toroidal plasmas
Physics of Plasmas. 2012. Vol. 19, num. 8, p. 082304. DOI : 10.1063/1.4740056.Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation
Plasma Physics and Controlled Fusion. 2012. Vol. 54, num. 12, p. 124047. DOI : 10.1088/0741-3335/54/12/124047.2011
Methodology for turbulence code validation: Quantification of simulation-experiment agreement and application to the TORPEX experiment
Physics of Plasmas. 2011. Vol. 18, num. 3, p. 032109. DOI : 10.1063/1.3559436.Existence of subsonic plasma sheaths
Physical Review E. 2011. Vol. 83, num. 1, p. 016406. DOI : 10.1103/PhysRevE.83.016406.2010
Electrostatic instabilities, turbulence and fast ion interactions in the TORPEX device
Plasma Physics and Controlled Fusion. 2010. Vol. 52, num. 12, p. 124020. DOI : 10.1088/0741-3335/52/12/124020.Enseignement et PhD
Doctorant·es actuel·les
Zeno Tecchiolli, Pierrick Paul Louis Giroud-Garampon, Erol Balkovic, Ludovic Rais
A co-dirigé les thèses EPFL de
Guillaume Michel Le Bars, Antoine Baillod, António João Caeiro Heitor Coelho
Cours
Introduction à la physique des plasmas
PHYS-325
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comportement. Application à la fusion thermonucléaire ainsi qu'à certains phénomènes de l'astrophysique.
Magnetic confinement
PHYS-731
The course provides an overview of the fundamentals of magnetic confinement of plasmas for fusion. The different magnetic confinement configurations are presented, with a description of their operating regimes. The basic elements of particle and energy transport are introduced.
Physique générale : électromagnétisme
PHYS-201(a)
Le cours traite des concepts de l'électromagnétisme et des ondes électromagnétiques.