Profile picture

Hendrik Huwald

EPFL Valais Wallis
EPFL ENAC IIE CRYOS
Route des Ronquos 86
1951 Sion

EPFL ENAC SSIE-GE
GR A0 444 (Bâtiment GR)
Station 2
1015 Lausanne

Current work

  • Surface mass and energy balance in alpine & polar environments
  • Measurement techniques and sensor development
  • Environmental monitoring and analysis


Dr. Hendrik Huwald is a scientist at the Laboratory of Cryospheric Sciences (CRYOS) and a lecturer at the Environmental Sciences and Engineering Section (SSIE) of the Swiss Federal Institute of Technology in Lausanne (EPFL). He completed his PhD in 2003 at the Swiss Federal Institute of Technology in Zürich (ETHZ), developing a numerical model for sea ice and studying energy transfer processes in the Arctic. Between 2005 and 2012 he was a post-doctoral fellow and scientist at the Laboratory of Environmental Fluid Mechanics and Hydrology (EFLUM) of EPFL working on Alpine snow-atmosphere interaction, and energy balance-related research mainly in mountain regions. During this time, he designed, led and participated in numerous large field experiments in different environments. In 2013 he joined the newly founded CRYOS laboratory where he conducted research in the domains of snow science, hydrology, boundary layer meteorology and environmental sensing. He has extensive experience with project management both on national and international level.

Education

PhD

| Climatology

2003 – 2003 Inst. for Atmospheric and Climate Sciences, ETH Zurich

MSc

| Climatology

1999 – 1999 Inst. for Atmospheric and Climate Sciences, ETH Zurich

BSc

| Geography, Meteorology

1995 – 1995 J.W.Goethe University, Frankfurt

Publications

[37] Banner Cloud Formation at the Matterhorn: Measurements versus Large-Eddy Simulations

M. L. ThomasS. W. HochH. HuwaldM. LehningB. J. A. van Schaik  et al.

Journal of the Atmospheric Sciences. 2025. DOI : 10.1175/jas-d-24-0193.1.

[36] The MatterHEX Experiment – Investigating Atmospheric Flow Patterns in Highly Complex Terrain Related to Banner Cloud Formation

S. W. HochM. L. ThomasH. HuwaldM. LehningB. J. A. van Schaik  et al.

Bulletin of the American Meteorological Society. 2025. DOI : 10.1175/bams-d-24-0108.1.

[35] Influence of air flow features on alpine wind energy potential

F. KristiantiF. GerberS. Gonzalez-HerreroJ. DujardinH. Huwald  et al.

Frontiers In Energy Research. 2024. DOI : 10.3389/fenrg.2024.1379863.

[34] Using the Sensible Heat Flux Eddy Covariance-Based Exchange Coefficient to Calculate Latent Heat Flux from Moisture Mean Gradients Over Snow

S. González-HerreroA. SigmundM. HaugenederO. HamesH. Huwald  et al.

Boundary-Layer Meteorology. 2024. DOI : 10.1007/s10546-024-00864-y.

[33] Quantifying urban climate response to large-scale forcing modified by local boundary layer effects

S. M. Hamze-ZiabariM. JafariH. HuwaldM. Lehning

Frontiers in Environmental Science. 2024. DOI : 10.3389/fenvs.2024.1438917.

[32] Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow

A. SigmundJ. DujardinF. ComolaV. SharmaH. Huwald  et al.

Boundary-Layer Meteorology. 2023. DOI : 10.1007/s10546-021-00653-x.

[31] Combining Weather Station Data and Short-Term LiDAR Deployment to Estimate Wind Energy Potential with Machine Learning: A Case Study from the Swiss Alps

F. KristiantiJ. DujardinF. GerberH. HuwaldS. W. Hoch  et al.

Boundary Layer Meteorology. 2023. DOI : 10.1007/s10546-023-00808-y.

[30] Observations and simulations of new snow density in the drifting snow-dominated environment of Antarctica

N. WeverE. KeenanC. AmoryM. LehningA. Sigmund  et al.

Journal Of Glaciology. 2022. DOI : 10.1017/jog.2022.102.

[29] Future water temperature of rivers in Switzerland under climate change investigated with physics-based models

A. MichelB. SchaefliN. WeverH. ZekollariM. Lehning  et al.

Hydrology and Earth System Sciences. 2022. DOI : 10.5194/hess-26-1063-2022.

[28] Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow

A. SigmundJ. DujardinF. ComolaV. SharmaH. Huwald  et al.

Boundary-Layer Meteorology. 2022. DOI : 10.1007/s10546-021-00653-x.

[27] Climate change scenarios at hourly time‐step over Switzerland from an enhanced temporal downscaling approach

A. MichelV. SharmaM. LehningH. Huwald

International Journal of Climatology. 2021. DOI : 10.1002/joc.7032.

[26] Changement climatique et température des rivières

A. MichelJ. EptingB. SchaefliM. LehningH. Huwald

Aqua & Gas. 2021.

[25] Radar measurements of blowing snow off a mountain ridge

B. WalterH. HuwaldJ. GehringY. BühlerM. Lehning

The Cryosphere. 2020. DOI : 10.5194/tc-14-1779-2020.

[24] Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour

A. MichelT. BrauchliM. LehningB. SchaefliH. Huwald

Hydrology and Earth System Sciences. 2020. DOI : 10.5194/hess-24-115-2020.

[23] The European mountain cryosphere: a review of its current state, trends, and future challenges

M. BenistonD. FarinottiM. StoffelL. M. AndreassenE. Coppola  et al.

The Cryosphere. 2018. DOI : 10.5194/tc-12-759-2018.

[22] How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?

S. SchlöglM. LehningK. NishimuraH. HuwaldN. J. Cullen  et al.

Boundary Layer Meteorology. 2017. DOI : 10.1007/s10546-017-0262-1.

[21] Influence of slope-scale snowmelt on catchment response simulated with the Alpine3D model

T. J. BrauchliE. TrujilloH. HuwaldM. Lehning

Water Resources Research. 2017. DOI : 10.1002/2017WR021278.

[20] Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain

H. J. OldroydE. R. PardyjakH. HuwaldM. B. Parlange

Boundary-Layer Meteorology. 2016. DOI : 10.1007/s10546-015-0066-0.

[19] StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction

A. GalliceM. BavayT. J. BrauchliF. ComolaM. Lehning  et al.

Geoscientific Model Development. 2016. DOI : 10.5194/gmd-9-4491-2016.

[18] Fliessgewässertemperatur - zwei Modellansätze für zukünftige Prognosen

T. HeroldA. GalliceH. HuwaldA. Jakob

Aqua & Gas. 2016.

[17] Attenuation of wind-induced pressure perturbations in alpine snow

S. A. DrakeH. HuwaldM. B. ParlangeJ. S. SelkerA. W. Nolin  et al.

Journal of Glaciology. 2016. DOI : 10.1017/jog.2016.53.

[16] Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model

A. GalliceB. SchaefliM. LehningM. B. ParlangeH. Huwald

Hydrology and Earth System Sciences. 2015. DOI : 10.5194/hess-19-3727-2015.

[15] Comparison of different numerical approaches to the 1D sea-ice thermodynamics problem

F. DupontM. VancoppenolleL.-B. TremblayH. Huwald

Ocean Modelling. 2015. DOI : 10.1016/j.ocemod.2014.12.006.

[14] Thermal diffusivity of seasonal snow determined from temperature profiles

H. J. OldroydC. HigginsH. HuwaldJ. SelkerM. Parlange

Advances in Water Resources. 2013. DOI : 10.1016/j.advwatres.2012.06.011.

[13] Flow during the evening transition over steep Alpine slopes

D. F. NadeauE. R. PardyjakC. W. HigginsH. HuwaldM. Parlange

Quarterly Journal of the Royal Meteorological Society. 2013. DOI : 10.1002/qj.1985.

[12] Carbon monoxide as a tracer of gas transport in snow and other natural porous media

H. HuwaldJ. S. SelkerS. W. TylerM. CalafN. C. v. d. Giesen  et al.

Geophysical Research Letters. 2012. DOI : 10.1029/2011GL050247.

[11] Evolution of superficial lake water temperature profile under diurnal radiative forcing

N. VercauterenH. HuwaldE. Bou ZeidJ. S. SelkerU. Lemmin  et al.

Water Resources Research. 2011. DOI : 10.1029/2011WR010529.

[10] Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

C. A. KellerH. HuwaldM. K. VollmerA. WengerM. Hill  et al.

Atmospheric Measurement Techniques. 2011. DOI : 10.5194/amt-4-143-2011.

[9] Stream Temperature Response to Three Riparian Vegetation Scenarios by Use of a Distributed Temperature Validated Model

T. R. RothM. C. WesthoffH. HuwaldJ. A. HuffJ. F. Rubin  et al.

Environmental Science & Technology. 2010. DOI : 10.1021/es902654f.

[8] Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier

E. Bou-ZeidC. HigginsH. HuwaldC. MeneveauM. B. Parlange

Journal of Fluid Mechanics. 2010. DOI : 10.1017/S0022112010004015.

[7] Albedo effect on radiative errors in air temperature measurements

H. HuwaldC. W. HigginsM.-O. BoldiE. Bou-ZeidM. Lehning  et al.

Water Resources Research. 2009. DOI : 10.1029/2008WR007600.

[6] Estimation of wet surface evaporation from sensible heat flux measurements

N. VercauterenE. Bou-ZeidH. HuwaldM. B. ParlangeW. Brutsaert

Water Resources Research. 2009. DOI : 10.1029/2008WR007544.

[5] Subgrid-Scale Dynamics of Water Vapour, Heat, and Momentum over a Lake

N. VercauterenE. Bou-ZeidM. B. ParlangeU. LemminH. Huwald  et al.

Boundary-Layer Meteorology. 2008. DOI : 10.1007/s10546-008-9287-9.

[4] Spatial pattern and stability of the cold surface layer of Storglaciaren, Sweden

R. PetterssonP. JanssonH. HuwaldH. Blatter

Journal of Glaciology. 2007. DOI : 10.3189/172756507781833974.

[3] Distributed fiber-optic temperature sensing for hydrologic systems

J. S. SelkerL. ThévenazH. HuwaldA. MalletW. Luxemburg  et al.

Water Resources Research. 2006. DOI : 10.1029/2006WR005326.

[2] A multilayer sigma-coordinate thermodynamic sea ice model: Validation against Surface Heat Budget of the Arctic Ocean (SHEBA)/Sea Ice Model Intercomparison Project Part 2 (SIMIP2) data

H. HuwaldL.-B. TremblayH. Blatter

Journal of Geophysical Research. 2005. DOI : 10.1029/2004JC002328.

[1] Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes

H. HuwaldL.-B. TremblayH. Blatter

Journal of Geophysical Research. 2005. DOI : 10.1029/2003JC002221.

Infoscience

Influence of air flow features on alpine wind energy potential

F. KristiantiF. GerberS. Gonzalez-HerreroJ. DujardinH. Huwald  et al.

Frontiers In Energy Research. 2024-05-24. DOI : 10.3389/fenrg.2024.1379863.

Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow (vol 182, pg 119, 2022)

A. SigmundJ. DujardinF. ComolaV. SharmaH. Huwald  et al.

Boundary-Layer Meteorology. 2023-05-20. DOI : 10.1007/s10546-023-00809-x.

Combining Weather Station Data and Short-Term LiDAR Deployment to Estimate Wind Energy Potential with Machine Learning: A Case Study from the Swiss Alps

F. KristiantiJ. DujardinF. GerberH. HuwaldS. W. Hoch  et al.

Boundary Layer Meteorology. 2023-05-11. DOI : 10.1007/s10546-023-00808-y.

Correction to: Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow

A. SigmundJ. DujardinF. ComolaV. SharmaH. Huwald  et al.

Boundary-Layer Meteorology. 2023. DOI : 10.1007/s10546-023-00809-x.

Observations and simulations of new snow density in the drifting snow-dominated environment of Antarctica

N. WeverE. KeenanC. AmoryM. LehningA. Sigmund  et al.

Journal Of Glaciology. 2022-12-14. DOI : 10.1017/jog.2022.102.

Future water temperature of rivers in Switzerland under climate change investigated with physics-based models

A. MichelB. SchaefliN. WeverH. ZekollariM. Lehning  et al.

Hydrology and Earth System Sciences. 2022-02-24. DOI : 10.5194/hess-26-1063-2022.

Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow

A. SigmundJ. DujardinF. ComolaV. SharmaH. Huwald  et al.

Boundary-Layer Meteorology. 2022. DOI : 10.1007/s10546-021-00653-x.

Climate change scenarios at hourly time‐step over Switzerland from an enhanced temporal downscaling approach

A. MichelV. SharmaM. LehningH. Huwald

International Journal of Climatology. 2021-02-01. DOI : 10.1002/joc.7032.

Changement climatique et température des rivières

A. MichelJ. EptingB. SchaefliM. LehningH. Huwald

Aqua & Gas. 2021.

Radar measurements of blowing snow off a mountain ridge

B. WalterH. HuwaldJ. GehringY. BühlerM. Lehning

The Cryosphere. 2020-06-03. DOI : 10.5194/tc-14-1779-2020.

Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour

A. MichelT. BrauchliM. LehningB. SchaefliH. Huwald

Hydrology and Earth System Sciences. 2020-01-10. DOI : 10.5194/hess-24-115-2020.

Influence of slope-scale snowmelt on catchment response simulated with the Alpine3D model

T. J. BrauchliE. TrujilloH. HuwaldM. Lehning

Water Resources Research. 2017. DOI : 10.1002/2017WR021278.

How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?

S. SchlöglM. LehningK. NishimuraH. HuwaldN. J. Cullen  et al.

Boundary Layer Meteorology. 2017. DOI : 10.1007/s10546-017-0262-1.

StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction

A. GalliceM. BavayT. J. BrauchliF. ComolaM. Lehning  et al.

Geoscientific Model Development. 2016. DOI : 10.5194/gmd-9-4491-2016.

Fliessgewässertemperatur - zwei Modellansätze für zukünftige Prognosen

T. HeroldA. GalliceH. HuwaldA. Jakob

Aqua & Gas. 2016.

Attenuation of wind-induced pressure perturbations in alpine snow

S. A. DrakeH. HuwaldM. B. ParlangeJ. S. SelkerA. W. Nolin  et al.

Journal of Glaciology. 2016. DOI : 10.1017/jog.2016.53.

Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain

H. J. OldroydE. R. PardyjakH. HuwaldM. B. Parlange

Boundary-Layer Meteorology. 2016. DOI : 10.1007/s10546-015-0066-0.

Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model

A. GalliceB. SchaefliM. LehningM. B. ParlangeH. Huwald

Hydrology and Earth System Sciences. 2015. DOI : 10.5194/hess-19-3727-2015.

Comparison of different numerical approaches to the 1D sea-ice thermodynamics problem

F. DupontM. VancoppenolleL.-B. TremblayH. Huwald

Ocean Modelling. 2015. DOI : 10.1016/j.ocemod.2014.12.006.

Flow during the evening transition over steep Alpine slopes

D. F. NadeauE. R. PardyjakC. W. HigginsH. HuwaldM. Parlange

Quarterly Journal of the Royal Meteorological Society. 2013. DOI : 10.1002/qj.1985.

Thermal diffusivity of seasonal snow determined from temperature profiles

H. J. OldroydC. HigginsH. HuwaldJ. SelkerM. Parlange

Advances in Water Resources. 2013. DOI : 10.1016/j.advwatres.2012.06.011.

Carbon monoxide as a tracer of gas transport in snow and other natural porous media

H. HuwaldJ. S. SelkerS. W. TylerM. CalafN. C. v. d. Giesen  et al.

Geophysical Research Letters. 2012. DOI : 10.1029/2011GL050247.

Evolution of superficial lake water temperature profile under diurnal radiative forcing

N. VercauterenH. HuwaldE. Bou ZeidJ. S. SelkerU. Lemmin  et al.

Water Resources Research. 2011. DOI : 10.1029/2011WR010529.

Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

C. A. KellerH. HuwaldM. K. VollmerA. WengerM. Hill  et al.

Atmospheric Measurement Techniques. 2011. DOI : 10.5194/amt-4-143-2011.

Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier

E. Bou-ZeidC. HigginsH. HuwaldC. MeneveauM. B. Parlange

Journal of Fluid Mechanics. 2010. DOI : 10.1017/S0022112010004015.

Stream Temperature Response to Three Riparian Vegetation Scenarios by Use of a Distributed Temperature Validated Model

T. R. RothM. C. WesthoffH. HuwaldJ. A. HuffJ. F. Rubin  et al.

Environmental Science & Technology. 2010. DOI : 10.1021/es902654f.

Albedo effect on radiative errors in air temperature measurements

H. HuwaldC. W. HigginsM.-O. BoldiE. Bou-ZeidM. Lehning  et al.

Water Resources Research. 2009. DOI : 10.1029/2008WR007600.

Estimation of wet surface evaporation from sensible heat flux measurements

N. VercauterenE. Bou-ZeidH. HuwaldM. B. ParlangeW. Brutsaert

Water Resources Research. 2009. DOI : 10.1029/2008WR007544.

Subgrid-Scale Dynamics of Water Vapour, Heat, and Momentum over a Lake

N. VercauterenE. Bou-ZeidM. B. ParlangeU. LemminH. Huwald  et al.

Boundary-Layer Meteorology. 2008. DOI : 10.1007/s10546-008-9287-9.

Spatial pattern and stability of the cold surface layer of Storglaciaren, Sweden

R. PetterssonP. JanssonH. HuwaldH. Blatter

Journal of Glaciology. 2007. DOI : 10.3189/172756507781833974.

Distributed fiber-optic temperature sensing for hydrologic systems

J. S. SelkerL. ThévenazH. HuwaldA. MalletW. Luxemburg  et al.

Water Resources Research. 2006. DOI : 10.1029/2006WR005326.

Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes

H. HuwaldL.-B. TremblayH. Blatter

Journal of Geophysical Research. 2005. DOI : 10.1029/2003JC002221.

A multilayer sigma-coordinate thermodynamic sea ice model: Validation against Surface Heat Budget of the Arctic Ocean (SHEBA)/Sea Ice Model Intercomparison Project Part 2 (SIMIP2) data

H. HuwaldL.-B. TremblayH. Blatter

Journal of Geophysical Research. 2005. DOI : 10.1029/2004JC002328.

Courses

ENV-525 | ENV-320

This course covers principles of snow physics, snow hydrology, snow-atmosphere interaction and snow modeling. It transmits sound understanding of physical processes within the snow and at its interfaces with the atmosphere and the ground, including field, laboratory, and modeling techniques.