# Pasquale Scarlino

**EPFL SB IPHYS HQC **

PH D2 364 (Bâtiment PH)

Station 3

1015 Lausanne

Web site: Web site: https://www.epfl.ch/labs/hqc/

**EPFL SB IPHYS HQC **

PH D2 364 (Bâtiment PH)

Station 3

1015 Lausanne

Web site: Web site: https://sph.epfl.ch/

### Biography

I obtained my master's degree in Physics at the University of Salento, Lecce (Italy) in February 2011. During 2006-2011, I have also been a student of Scuola Superiore ISUFI (SSI). SSI is one of six schools of excellence established in Italy to develop the intellectual capital in technological and social sciences. I conducted an external Master thesis project during an 8 months internship in the Quantum Transport Group at TU Delft, under the supervision of Prof. L.M.K. Vandersypen. There, I implemented the Quantum Point Contact Radio-Frequency Reflectometry technique, which allows increasing the single-shot electron spin readout bandwidth and is currently routinely used in the group.I obtained my Ph.D. degree in February 2016, in the Spin Qubits group of Prof. L.M.K. Vandersypen at the Kavli Institute of Nanoscience-Qutech (TU Delft). During my Ph.D. I have been leading the Si/SiGe spin qubits project, collaborating with the M. Eriksson Group at Wisconsin University. In parallel, I have been working on other different projects, in particular with GaAs depletion quantum dots, high impedance superconducting resonators, and surface acoustic wave resonators.

I have been working as a Postdoc fellow in the group of Prof. A. Wallraff (Quantum Device Lab) at ETH Zurich. My main project, in collaboration with the group of Prof. K. Ensslin and Prof. T. Ihn, consisted in integrating semiconductor and superconductor technologies. Realizing a well-controlled interface between the semiconductor and superconductor-based quantum information technologies may allow harnessing the best of both device architectures, for example by providing an interface between strongly coupled charge state and high coherence spin states. Furthermore, it enables the possibility to explore light/matter hybridization in a class of solid-state systems and regimes that are new in the context of quantum optics.

From June 2019 till September 2020, I have been a Senior Researcher at Microsoft Station Q Copenhagen and at the Center for Quantum Devices in Copenhagen, focusing on developing semiconductor-superconducting hybrid hardware for topologically protected quantum computation.

Since October 2020, I am a tenure track Assistant Professor of Physics in the School of Basic Sciences at the EPFL where I founded the Hybrid Quantum Circuit (HQC) laboratory.

## Publications

### Selected publications

E. Kawakami*, P. Scarlino*, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. VandersypenNature Nanotechnology 9, 666-670 (2014) |
Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot |

T.F. Watson, S.G.J. Philips, E. Kawakami, D. Ward, P. Scarlino, M. Veldhorst, D.E. Savage, M.G. Lagally, Mark Friesen, S.N. Coppersmith, M.A. Eriksson, and L.M.K VandersypenNature 555, 633–637(2018) |
A fully programmable two-qubit quantum processor in silicon |

A. Stockklauser*, P. Scarlino*, J. V. Koski, S. Gasparinetti, C. K. Andersen, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, and A. Wallraff,Phys. Rev. X 7, 011030 (2017) |
Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator |

P. Scarlino*, D. J. van Woerkom*, A. Stockklauser, J. V. Koski , M. Collodo, S. Gasparinetti, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, and A. WallraffPhys. Rev. Lett. 122, 2068092 (2019) |
All-Microwave Control and Dispersive Readout of Gate-Defined Quantum Dot Qubits in Circuit Quantum Electrodynamics |

D. J. van Woerkom*, P. Scarlino*, J. H. Ungerer, C. Müller, J. V. Koski, A. Landig, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. WallraffPhys. Rev. X 8, 041018 (2018) |
Microwave photon-mediated interactions between semiconductor qubits |

P. Scarlino*, D. J. van Woerkom*, U. C. Mendes, S. Gasparinetti, J. V. Koski, A. Landig, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, A. Blais and A. Wallraff Nature Communications 10, 3011 (2019) |
Coherent microwave photon mediated coupling between a semiconductor and a superconductor qubit |

N. Shamkaradze, A. Bruno, P. Scarlino, G. Zheng, D. P. DiVincenzo, L. DiCarlo, L. M. K. VandersypenPhys. Rev. Applied 5, 044004 (2016) |
High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field |

A. Landig*, J. Koski*, P. Scarlino, U. C. Mendes, A. Blais, C. Reichl, W. Wegscheider, A. Wallraff, T. Ihn, and K. EnsslinNature 560, 179–184 (2018) |
Coherent Spin-Qubit Photon Coupling |

A. Landig, J. V. Koski, P. Scarlino, C. Müller, J. C. Abadillo-Uriel, B. Kratochwil, C. Reichl, W. Wegscheider, A. Wallraff, K. Ensslin and T. Ihn Nature Communications 10, 5037 (2019) |
Virtual-photon-mediated spin-qubit–transmon coupling |

### Other publications

#### Complete Publication List

**2021**1.

**A Hertel, L.O. Andersen, D.M.T. van Zanten, M. Eichinger,**

*Electrical Properties of Selective-Area-Grown Superconductor-Semiconductor Hybrid Structures on Silicon,***P. Scarlino**, S. Yadav, J. Karthik, S. Gronin, G.C. Gardner, M.J. Manfra, C.M. Marcus, K.D. Petersson,

*arXiv preprint arXiv:2104.03621*2.

*In-situ Tuning of the Electric Dipole Strength of a Double Dot Charge Qubit: Charge Noise Protection and Ultra Strong Coupling**,*

**P. Scarlino**, J.H. Ungerer, D.J. van Woerkom, M. Mancini, P. Stano, C. Muller, A.J. Landig, J.V. Koski, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, A. Wallraff,

*arXiv preprint arXiv:2104.03045*

*3.*

*Charge qubit in a triple quantum dot with tunable coherence**,*B. Kratochwil, J. V. Koski, A. Landig,

**P. Scarlino,**J. C. Abadillo-Uriel, C. Reichl, S. N. Coppersmith, W. Wegscheider, Mark Friesen, A. Wallraff, T. Ihn, and K. Ensslin,

*Phys. Rev. Research*

**3**, 013171 (2021),

*also in*

*arXiv:2006.05883*4.

*Roadmap on Nanotechnology for Quantum Technology**,*A. Laucht, F. Hohls, N. Ubbelohde, F. Gonzalez-Zalba, D. Reilly, S. Stobbe, T. Schroeder,

**P. Scarlino**, J. V. Koski, A. Dzurak, C. H. Yang, J. Yoneda, F. Kuemmeth, H. Bluhm, J. Pla, C. Hill, J. Salfi, A. Oiwa, J. Muhonen, E. Verhagen, M. LaHaye, H. H. Kim, A. Tsen, D. Culcer, A. Geresdi, J. Mol , V. Mohan, P. Jain, J. Baugh,

*Nanotechnology*

**32**, 162003 (2021), also in

*arXiv:2101.07882*

**2020**5.

*Strong photon coupling to the quadrupole moment of an electron in solid state**,*J. V. Koski, A. Landig, M. Russ, J. C. Abadillo-Uriel,

**P. Scarlino**, B. Kratochwil, C. Reichl, W. Wegscheider, G. Burkard, Mark Friesen, S. N. Coppersmith, A. Wallraff, K. Ensslin and T. Ihn

*Nature Physics*

**16**, 642-646 (2020),

*also in*

*arXiv:1905.00846v1*

**2019**6.

*Virtual-photon-mediated spin-qubit–transmon coupling**,*A. Landig, J. V. Koski,

**P. Scarlino**, C. Müller, J. C. Abadillo-Uriel, B. Kratochwil, C. Reichl, W. Wegscheider, A. Wallraff, K. Ensslin andT. Ihn

*Nature Communications*

**10**, 5037 (2019), also in arXiv:1903.04022

7.

*Microwave-Cavity-Detected Spin Blockade in a Few-Electron Double Quantum Dot**,*

**A. Landig, J. V. Koski,**

**P. Scarlino,**C. Reichl, W. Wegscheider, A. Wallraff , K. Ensslin and T. Ihn

*Phys. Rev. Lett.*

**122**, 213601 (2019), also in arXiv:1811.03907 8.

*Coherent microwave photon mediated coupling between a semiconductor and a superconductor qubit**,*

**P. Scarlino***, D. J. van Woerkom*, U. C. Mendes, S. Gasparinetti, J. V. Koski, A. Landig, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, A. Blais and A. Wallraff

*Nature Communications*

**10**, 3011 (2019),also in arXiv:1806.10039

9.

*All-Microwave Control and Dispersive Readout of Gate-Defined Quantum Dot Qubits in Circuit Quantum Electrodynamics**,*

**P. Scarlino***, D. J. van Woerkom*, A. Stockklauser, J. V. Koski , M. Collodo, S. Gasparinetti, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, and A. Wallraff

*Phys. Rev. Lett.*

**122**, 2068092 (2019).

**[Editors’ Suggestion]**, also in arXiv:1711.01906

10.

*Frequency and time domain analysis of surface acoustic wave propagation on a piezoelectric GaAs substrate: a computational insight**,*C. Maruccio, M. Scigliuzzo, S. Rizzato,

**P. Scarlino**, G. Quaranta, M. S. Chiriaco, A. G. Monteduro, G. Maruccio

*Journal of Intelligent Material Systems and Structures*

**30**(6), 801-812 (2019).

**2018**11.

*Microwave photon-mediated interactions between semiconductor qubits**,*D. J. van Woerkom*,

**P. Scarlino***, J. H. Ungerer, C. Müller, J. V. Koski, A. Landig, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff

*Phys. Rev. X*

**8**, 041018 (2018), also in arXiv:1806.09902

12.

*Floquet spectroscopy of a strongly driven quantum dot charge qubit with a microwave resonator,**J. V. Koski, A. J. Landig, A. Palyi,*

**P. Scarlino**, G. Burkard, C. Reichl, W. Wegscheider, A. Wallraff, T. Ihn, and K. Ensslin

*Phys. Rev. Lett.*

*121**, 043603 (2018)*, also in arXiv:1802.03810

13.

*Coherent Spin-Qubit Photon Coupling**,*A. Landig*, J. Koski*,

**P. Scarlino**, U. C. Mendes, A. Blais, C. Reichl, W. Wegscheider, A. Wallraff, T. Ihn, and K. Ensslin

*Nature*

*560**, 179–184 (2018),*also in arXiv:1711.01932

14.

*Valley dependent anisotropic spin splitting in silicon quantum dots**,*R. Ferdous, E. Kawakami,

**P. Scarlino**, M. Nowack, D. R. Ward, D. E. Savage, M. G. Legally, G. Klimeck, M. Friesen, S. Coppersmith, M. Eriksson, L. Vandersypen, and R. Rahman

*npj Quantum Information*

*4,**26 (2018)*, also in arXiv:1702.06210 15.

*A fully programmable two-qubit quantum processor in silicon**,*T.F. Watson, S.G.J. Philips, E. Kawakami, D. Ward,

**P. Scarlino**, M. Veldhorst, D.E. Savage, M.G. Lagally, Mark Friesen, S.N. Coppersmith, M.A. Eriksson, and L.M.K Vandersypen

*Nature*

*555**, 633–637(2018*), also in arXiv:1708.04214

**2017**16.

**,A. Stockklauser*,**

*Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a HighImpedance Resonator***P. Scarlino***, J. V. Koski, S. Gasparinetti, C. K. Andersen, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, and A. Wallraff

*Phys. Rev. X*

**7**, 011030 (2017), also in arXiv:1701.03433 [see also

**Synopsis**: Strong Light-Matter Coupling in a Hybrid System].(*equal contribution)

17.

*Achieving GHz regime on GaAs with harmonic SAW devices by optical lithography,**S. Rizzato, M. Scigliuzzo, M. S. Chiriacò,*

**P. Scarlino**, A. G. Monteduro, V. Tasco, G. Maruccio

*Journal of Micromechanics and Microengineering*,

**27**(12), 125002 (2017).

18.

*Dressed photon-orbital states in a quantum dot: Inter-valley spin resonance**,*

**P. Scarlino**, E. Kawakami, D. R. Ward, T. Julien, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen

*Phys. Rev. B*

*95**, 165429*(2017), also in arXiv:1608.06538

**2016**19.

*High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field**,*

N. Shamkaradze, A. Bruno,

**P. Scarlino**, G. Zheng, D. P. DiVincenzo,L. DiCarlo, L. M. K. Vandersypen

*Phys. Rev. Applied*

**5**, 044004 (2016), also in arXiv:1511.01760

20.

*Gate fidelity and coherence of an electron spin in a Si/SiGe quantum dot with micromagnet**,*E. Kawakami, T. Julien,

**P. Scarlino**, D. R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, V. V. Dobrovitski, M. A. Eriksson, and L. M. K. Vandersypen PNAS,

**113**(42) 11738-11743 (2016), also in arXiv:1602.08334

**2015**21.

*Second Harmonic Coherent Driving of a Spin Qubit in a Si/SiGe Quantum Dot,*

**P. Scarlino**, E. Kawakami, D. R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen

*Phys. Rev. Lett.*

**115**, 106802 (2015), also in arXiv:1504.06436

**2014-2013**22.

*Spin relaxation anisotropy in a GaAs quantum dot,***P. Scarlino**, E. Kawakami, P. Stano, M. Shafiei, C. Reichl, W. Wegscheider, L. M. K. Vandersypen

*Phys. Rev. Lett.*

**113**, 256802 (2014).

**[Editors’ Suggestion]**, also in arXiv:1409.1016

23.

**E. Kawakami*,**

*Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot,***P. Scarlino***, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen

*Nature Nanotechnology*

**9**, 666-670 (2014), also in arXiv:1404.5402[see also Lars R. Schreiber & Hendrik Bluhm, Quantum computation: Silicon comes back,

*Nature Nanotechnology*(

**News and Views**)

**9, 966–968 (2014)]**

24.

*Excitation of a Si/SiGe quantum dot using an on-chip microwave antenna**,*E. Kawakami,

**P. Scarlino**, L. R. Schreiber, J. Prange, D.E. Savage, M.G. Lagally, M.A. Eriksson, L.M.K. Vandersypen

*Applied Physics Letters*

**103**, 132410 (2013).

### Research

#### Early achievements track-record

I have contributed to a broad spectrum of topics in semiconductor and superconducting quantum information technology, combining fundamental physics aspects and applications. This experience gives me a wide-range background at the border between microwave quantum optics, solid-state physics, and quantum information, which will be crucial to pursue the research vision combining microwave semiconducting and superconducting devices.During my Postdoc activity at ETH Zurich, I have been able to build a coherent interface based on high impedance resonators between superconducting and semiconducting platforms. This enabled a series of ground-breaking achievements:

• Strong coupling between a double quantum dot charge qubit a SQUID array cavity [1].

• The first time-resolved all-microwave control and dispersive readout of gate-defined QD charge qubits [2].

• Strong coupling between a semiconductor spin qubit and a high kinetic inductance resonator [3, 4].

• Virtual photon coherent interface between two spatially separated DQD-charge qubits [5].

• Coherent transmon-DQD charge/spin qubit coupling, mediated by virtual photons in a high impedance resonator [6, 7].

References:

[1] Phys. Rev. X 7, 011030 (2017)

[2] Phys. Rev. Lett. 122, 2068092 (2019). [Editors’ Suggestion]

[3] Phys. Rev. Applied 5, 044004 (2016)

[4] Nature 560, 179–184 (2018)

[5] Phys. Rev. X 8, 041018 (2018)

[6] Nature Communications 10, 3011 (2019)

[7] Nature Communications 10, 5037 (2019)

#### Research Interests

My research focuses on the experimental study of hybrid superconductor/semiconductor devices implemented with electrostatically defined quantum dots (QDs) interacting with high impedance compact microwave resonators. By promoting the interaction of quantum systems defined by very distinct degrees of freedom, we will build unique and more complex but very versatile systems that allow exploring light-matter interaction in novel unconventional regimes.This research activity presents very interdisciplinary aspects, as it requires expertise in different research fields: (a) Quantum transport in low dimension systems; (b) Spin and charge qubits in gate-defined semiconductor QDs; (c) cQED with superconducting qubits and multimode high impedance technology.

While both superconducting and semiconducting quantum hardware presents a strong potential on their own, my research will explore novel opportunities emerging at the intersection between them, in the context of quantum computing, quantum optics, and analog quantum simulation.

The long-term ambition of my activity is to coherently merge the two platforms to significantly broaden the range of problems that the solid-state quantum information hardware can address and propose new strategies and solutions for quantum information technology.

#### Invited Talks, Conferences and Workshops

1. Spin-orbit anisotropy and relaxation of GaAs single electron spin qubits, P. Scarlino, E. Kawakami, M. Shaifiei, L. M. K. Vandersypen,**EP2DS-20/ MSS-16, July 2013**, Wroclaw, Poland.

2. Electron spin resonance in Si/SiGe quantum dots, P. Scarlino, E. Kawakami, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen,

**Conference Physics@FOM 2014**, Veldhoven, The Netherland.

3. Control and coherence of Loss-DiVincenzo qubits in Si/SiGe, P. Scarlino, E. Kawakami, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, Mark FrieseS. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen,

**APS March Meeting 2014**, Denver, USA.

**(invited)**

4. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot, P. Scarlino, E. Kawakami, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen,

**The 1st International Workshop on Frontiers in Quantum Optics and Quantum Information: Quantum Computing with Electron Spin Qubits 2014**, Beijing, China.

**(invited)**

5. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot, P. Scarlino, E. Kawakami, D. R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen,

**IQIS2014 – 7th Italian Quantum Information Science Conference 2014**, September 2014, Salerno, Italy.

**(invited)**

6. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot, and spin relaxation anisotropy in GaAs QD, P. Scarlino, E. Kawakami, M. Shafiei, D. R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen,

**IoP One Day Quantum Dot Meeting 2015**, 12 January 2015, Cambridge, United Kingdom.

**(invited)**

7. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot, and Spin relaxation anisotropy in GaAs QD,P. Scarlino, E. Kawakami, M. Shafiei, D. R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen,

**Workshop “Spin coherence and relaxation phenomena in low-D systems”**, Aachen,

**March 25-27,**

2015. (invited)

2015. (invited)

8. High Gate Fidelity and Second Harmonic Coherent Driving of an Electron Spin in a Si/SiGe Quantum Dot,P. Scarlino, E. Kawakami, T. Julien, D. R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen,

**EP2DS-21/ MSS-17, July 26-31 2015**, Sendai, Japan.

9. High Gate Fidelity and Second Harmonic Coherent Driving of an Electron Spin in a Si/SiGe Quantum Dot,P. Scarlino, E. Kawakami, D. R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen,

**Silicon Quantum Electronics Workshop 2015, August 2-4 2015**, Keio, Japan.

10. Adiabatic and non-adiabatic non-linear driving of a spin-valley system in single Si/SiGe quantum dot,P. Scarlino, E. Kawakami, D. R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S.N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen,

**3rd MPQ-Kavli Workshop, October 8-9 2015**, Delft.

11. Si/SiGe Quantum Dots Fabrication-Overview,QuTech-Intel Research Collaboration Workshop, November 10-12 (2015), Delft.

12. Spin and valley physics of a single electron,

**Quantum Acoustics - Surface Acoustic Waves meets Solid-State Qubits, May 17th-20th 2016**, Mainz.

**(invited)**

13. Strong Coupling Cavity Quantum Electrodynamics (QED) with Gate-Defined Double Quantum Dots, P. Scarlino, A. Stockklauser, J. Koski, Gasparinetti, S., C. K. Andersen, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, and A. Wallraff,

**QSIT Meeting 2017, Arosa, Switzerland, Feb 1 - Feb 3, 2017**(contributed talk).

14. Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator,P. Scarlino, A. Stockklauser, J. Koski, Gasparinetti, S., C. K. Andersen, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, and A. Wallraff,

**The first annual symposium on Quantum Science and Quantum Engineering,**Wurzburg, Germany,

**April 4 - April 6, 2017. (invited)**

15. Strong Coupling Cavity Quantum Electrodynamics (QED) with Gate-Defined Double Quantum Dots,

P. Scarlino, A. Stockklauser, J. Koski, Gasparinetti, S., C. K. Andersen, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, and A. Wallraff,

**18th International Conference on Physics of Light-Matter Coupling in Nanostructures (PLMCN18)**, Würzburg, Germany,

**9 -14 July, 2017**(contributed talk).

16. Coherent Transmon-Charge Qubit Coupling Mediated by Virtual Photon Exchange in a High Impedance Resonator,

P. Scarlino, D. J. van Woerkom, U. Mendes, J. Koski, S. Gasparinetti, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, A. Blais and A. Wallraff,

**APS March meeting**, Los Angeles,

**March 5 - 8, 2018**.

17. Coherent Transmon-Charge Qubit Coupling Mediated by Virtual Photon Exchange in a High Impedance Resonator,

P. Scarlino, D. J. van Woerkom, U. Mendes, J. Koski, S. Gasparinetti, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, A. Blais and A. Wallraff,

**ICPS 2018**, Montpellier,

**July 29 - August 3, 2018**.

18. Circuit Quantum Electrodynamics with superconductor-semiconductor hybrid systems,

P. Scarlino, D. J. van Woerkom, U. Mendes, J. Koski, A. Landig, S. Gasparinetti, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, A. Blais and A. Wallraff,

**APS March meeting**, Boston,

**March 5 - 8, 2019. (invited)**

19. Microwave Cavity Quantum Electrodynamics with superconductor-semiconductor hybrid technology,

P. Scarlino, D. J. van Woerkom, U. Mendes, J. Koski, A. Landig, S. Gasparinetti, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, and A. Wallraff,

**706. WE-Heraeus-Seminar on ‘Superconducting Kinetic Inductances’**, Bad Honnef (Germany),

**11 - 13 Nov 2019. (invited)**

20. Hybrid Circuit Quantum Electrodynamics with Semiconductor QDs and High Impedance Superconducting Resonators,

P. Scarlino, J. Koski, A. Landig, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, and A. Wallraff,

**9th CEMS Topical Meeting Online "Recent Advances in Semiconductor Qubits"**, 9 March 2021.

**(invited)**

### Teaching & PhD

#### Teaching

Physics

#### PhD Students

Acinapura Elena, Beaulieu Guillaume, De Palma Franco, Gaál Benedek, Jouanny Vincent Jean Yves, Massai Leonardo, Oppliger Fabian, Orekhov Alexei, Roy Camille René Charles,### Courses

#### Solid state systems for quantum information

This course will give an overview of the experimental state of the art of quantum technology for Quantum Information Processing (QIP). We will explore some of the most promising approaches for realizing quantum hardware and critically assess each approach's strengths and weaknesses.

#### Introduction to quantum science and technology

A broad view of the diverse aspects of the field is provided: quantum physics, communication, quantum computation, simulation of physical systems, physics of qubit platforms, hardware technologies. Students will grasp the field as a whole and better orient themselves on specialized topics.