Gonzalo Cao Labora
Nationalité: EU (Spanish)
EPFL SB MATH AMCV
MA B2 455 (Bâtiment MA)
Station 8
1015 Lausanne
+41 21 693 50 58
Office: MA B2 455
EPFL › SB › MATH › AMCV
Site web: https://amcv.epfl.ch/
+41 21 693 50 58
Office: MA B2 455
EPFL › SB › SB-SMA › SMA-ENS
Site web: https://sma.epfl.ch/
Expertise
Formation
BSc in Mathematics
| With a final degree thesis at Princeton University (2019-2020)2016 – 2020 Universitat Politecnica de Catalunya (CFIS)
BSc in Physics Engineering
|2016 – 2020 Universitat Politecnica de Catalunya (CFIS)
PhD in Mathematics
|2020 – 2024 MIT
Expériences professionnelles
Courant Instructor
Travel
- ETH Zurich: 11-12 November
- Princeton / IAS: 18-20 November
- Brown University / ICERM: 20-23 November
- Washington DC, JMM: 4-7 January
- Alicante, Congreso de la RSME: 19-23 January 2026
- Madrid, ICMAT / CUNEF 15-19 June 2026
- Athens, AIMS, 6-10 July 2026
Here is a list of my past academic travel since Spring 2025:
- IAS: April 28-29
- UB (Barcelona): May 25-30
- MIT: June 23-24
- University of Mass Amherst: June 25-26
- Brown University: June 27
- IMUS / University of Seville: July 14-18
- Oberwolfach Institute: July 21-25
- Princeton University: August 10-17
- SCAN conference Oldenburg, Germany: 22-26 Sept
- ETH Zurich (seminar talk): 14 October
Publications représentatives
Smooth imploding solutions for 3D compressible fluids
Buckmaster, Cao-Labora, Gomez-Serrano
Published in Forum of Mathematics Pi in 2025
Non-implosion for compressible Euler and Navier-Stokes in T^3 and R^3
Cao-Labora, Gomez-Serrano, Shi, Staffilani
Published in To appear in Cambridge Journal of Mathematics in 2025
Discovery of Unstable Singularities
Wang et al.
Published in arxiv preprint in 2025
A contractible Schiffer counterexample on the half-sphere
Cao-Labora, Fernández
Published in arXiv preprint in 2025
Enseignement et PhD
Courses
Introduction to partial differential equations
MATH-305
Ce cours donne une introduction à la théorie des Equations aux Dérivées Partielles (EDP) elliptiques, y compris l'étude de solutions classiques et des solutions généralisées (ou faibles).