Profile picture

Gonzalo Cao Labora

Nationalité: EU (Spanish)

EPFL SB MATH AMCV
MA B2 455 (Bâtiment MA)
Station 8
1015 Lausanne

Expertise

I am interested in Analysis of Fluids, specially in self-similar solutions and their stability. I am also generally interested in the use of computer-assisted tools to tackle problems in PDE

Formation

BSc in Mathematics

| With a final degree thesis at Princeton University (2019-2020)

2016 – 2020 Universitat Politecnica de Catalunya (CFIS)

BSc in Physics Engineering

|

2016 – 2020 Universitat Politecnica de Catalunya (CFIS)

PhD in Mathematics

|

2020 – 2024 MIT

Expériences professionnelles

Courant Instructor

Travel

Here is a list of my forthcoming academic. If you will be in one of those places and want to talk about math, feel free to write me an email!
  •      ETH Zurich: 11-12 November
  •     Princeton / IAS: 18-20 November
  •     Brown University / ICERM: 20-23 November
  •     Washington DC, JMM: 4-7 January
  •     Alicante, Congreso de la RSME: 19-23 January 2026
  •     Madrid, ICMAT / CUNEF 15-19 June 2026
  •     Athens, AIMS, 6-10 July 2026

Here is a list of my past academic travel since Spring 2025:
  •     IAS: April 28-29
  •     UB (Barcelona): May 25-30
  •     MIT: June 23-24
  •     University of Mass Amherst: June 25-26
  •     Brown University: June 27
  •     IMUS / University of Seville: July 14-18
  •     Oberwolfach Institute: July 21-25
  •     Princeton University: August 10-17
  •     SCAN conference Oldenburg, Germany: 22-26 Sept
  •     ETH Zurich (seminar talk): 14 October

Publications représentatives

Smooth imploding solutions for 3D compressible fluids

Buckmaster, Cao-Labora, Gomez-Serrano
Published in Forum of Mathematics Pi in 2025

Non-implosion for compressible Euler and Navier-Stokes in T^3 and R^3

Cao-Labora, Gomez-Serrano, Shi, Staffilani
Published in To appear in Cambridge Journal of Mathematics in 2025

Discovery of Unstable Singularities

Wang et al.
Published in arxiv preprint in 2025

A contractible Schiffer counterexample on the half-sphere

Cao-Labora, Fernández
Published in arXiv preprint in 2025

Enseignement et PhD

Courses

Introduction to partial differential equations

MATH-305

Ce cours donne une introduction à la théorie des Equations aux Dérivées Partielles (EDP) elliptiques, y compris l'étude de solutions classiques et des solutions généralisées (ou faibles).