Geovani Rizk
EPFL IC IINFCOM DCL
INR 315 (Bâtiment INR)
Station 14
1015 Lausanne
Web site: Web site: https://dcl.epfl.ch/
Fields of expertise
Distributed Machine Learning, Robustness, Safety, Optimization, Multi-Agent, Bandits in Graphs
Biography
I am a postdoctoral researcher at École Polytechnique Fédérale de Lausanne since 2022, where I work with Rachid Guerraoui on robustness of distributed machine learning algorithms. From 2018 to 2022, I completed my Ph.D. in computer science at Université Paris Dauphine-PSL on multi-agent bandits in graphs under the supervision of Yann Chevaleyre, Rida Laraki, Igor Colin, and Albert Thomas.Publications
Byzantine-Robust Federated Learning: Impact of Client Subsampling and Local UpdatesY Allouah, S Farhadkhani, R Guerraoui, N Gupta, R Pinot, G Rizk, S Voitovych – ICML (2024)
Robust Distributed Learning: Tight Error Bounds and Breakdown Point under Data Heterogeneity
Y Allouah, R Guerraoui, N Gupta, R Pinot, G. Rizk – NeurIPS (2023)
Stochastic Graphical Bilinear Bandits
G Rizk – Ph.D. Thesis (2022)
An α-No-Regret Algorithm For Graphical Bilinear Bandits.
G Rizk, A Thomas, I Colin, R Laraki, Y Chevaleyre – NeurIPS (2022)
Best Arm Identification In Graphical Bilinear Bandits.
G Rizk, A Thomas, I Colin, R Laraki, Y Chevaleyre – ICML (2021)
Randomization Matters. How To Defend Against Strong Adversarial Attacks.
R Pinot, R Ettedgui, G Rizk, Y Chevaleyre, J Atif – ICML (2020)
Refined Bounds For Randomized Experimental Design.
G Rizk, A Thomas, I Colin, M Draief – NeurIPS Workshop, ML with Guarantees (2019)
Pre-prints
Overcoming the Challenges of Batch Normalization in Federated LearningR Guerraoui, R Pinot, G Rizk, J Stephan, F Taiani – Preprint, Under review (2024)
Boosting Robustness by Clipping Gradients in Distributed Learning
Y Allouah, R Guerraoui, N Gupta, A Jellouli, G Rizk, J Stephan – Preprint, Under review (2024)