Profile picture

Simone Deparis

EPFL AVP-E CePRO
RLC D1 650 (Rolex Learning Center)
Station 20
1015 Lausanne

EPFL SB MATH SCI-SB-SD
MA B2 477 (Bâtiment MA)
Station 8
1015 Lausanne

EPFL SB SMA-GE
MA B2 477 (Bâtiment MA)
Station 8
1015 Lausanne

EPFL SB SMA-GE
MA B2 477 (Bâtiment MA)
Station 8
1015 Lausanne

Expertise

Simone Deparis is a professor at EPFL specializing in applied mathematics, numerical analysis, and the didactics of university-level mathematics. His research spans computational modeling for biomedical applications and innovations in mathematics education, with a focus on equity, self-efficacy, and assessment reform in large STEM cohorts.

Mission

Our group conducts research at the intersection of applied mathematics and learning sciences. In applied mathematics, we focus on modeling and simulation of complex systems, particularly cardiovascular flows, using advanced numerical methods, model order reduction, and physics-informed machine learning. In parallel, we investigate teaching and learning in higher education, with an emphasis on first-year mathematics, innovative assessment practices, and the role of computational tools in fostering equity and student success.

Education

Applied Mathematics

| Numerical analysis of axisymmetric flows and methods for fluid-structure interaction arising in blood flow simulation

2001 – 2004 EPFL
Directed by Alfio Quarteroni

Applied Mathematics

| Probabilité et Calcul Scientifique

1998 – 1999 Ecole Polytechnique Paris et EPFL

Mathematics

|

1992 – 1997 ETH Zurich

Professionals experiences

Post-doc

Post-doctoral fellow and associate in the Department of Mechanical Engineering

Awards

Credit Suisse Award for Best Teaching

EPFL

2018

Publications

2025

[1] Model order reduction of hæmodynamics by space–time reduced basis and reduced fluid–structure interaction

R. TenderiniS. Deparis

Computer Methods in Applied Mechanics and Engineering

2025

Vol. 447, p. 118347.

DOI : 10.1016/j.cma.2025.118347

[2] A spline-based hexahedral mesh generator for patient-specific coronary arteries

F. MarcinnòJ. HinzA. BuffaS. Deparis

Computer Methods in Applied Mechanics and Engineering

2025

Vol. 445, p. 118153.

DOI : 10.1016/j.cma.2025.118153

2024

[3] SPACE-TIME REDUCED BASIS METHODS FOR PARAMETRIZED UNSTEADY STOKES EQUATIONS

R. TenderiniN. MuellerS. Deparis

Siam Journal On Scientific Computing

2024

Vol. 46, num. 1, p. B1 - B32.

DOI : 10.1137/22M1509114

2023

[4] DeepBND: A machine learning approach to enhance multiscale solid mechanics

F. RochaS. DeparisP. AntolinA. Buffa

Journal of Computational Physics

2023

Vol. 479, p. 111996.

DOI : 10.1016/j.jcp.2023.111996

2022

[5] The INTERNODES method for applications in contact mechanics and dedicated preconditioning techniques

Y. VoetG. AnciauxS. DeparisP. Gervasio

Computers & Mathematics With Applications

2022

Vol. 127, p. 48 - 64.

DOI : 10.1016/j.camwa.2022.09.019

[6] PDE-Aware Deep Learning for Inverse Problems in Cardiac Electrophysiology

R. TenderiniS. PaganiA. QuarteroniS. Deparis

SIAM Journal on Scientific Computing

2022

Vol. 44, num. 3, p. B605 - B639.

DOI : 10.1137/21M1438529

[7] Gender, prior knowledge, and the impact of a flipped linear algebra course for engineers over multiple years

C. HardebolleH. VermaR. TormeyS. Deparis

Journal of Engineering Education

2022

p. 1 - 21.

DOI : 10.1002/jee.20467

[8] Conservation of Forces and Total Work at the Interface Using the Internodes Method

S. DeparisP. Gervasio

Vietnam Journal of Mathematics

2022

DOI : 10.1007/s10013-022-00560-9

2021

[9] Deep Neural Network to Accurately Predict Left Ventricular Systolic Function Under Mechanical Assistance

J. BonnemainM. ZellerL. PegolottiS. DeparisL. Liaudet

Frontiers In Cardiovascular Medicine

2021

Vol. 8, p. 752088.

DOI : 10.3389/fcvm.2021.752088

[10] Model order reduction of flow based on a modular geometrical approximation of blood vessels

L. PegolottiM. R. PfallerA. L. MarsdenS. Deparis

Computer Methods in Applied Mechanics and Engineering

2021

Vol. 380, p. 113762.

DOI : 10.1016/j.cma.2021.113762

2020

[11] Implementation and Calibration of a Deep Neural Network to Predict Parameters of Left Ventricular Systolic Function Based on Pulmonary and Systemic Arterial Pressure Signals

J. BonnemainL. PegolottiL. LiaudetS. Deparis

Frontiers In Physiology

2020

Vol. 11, p. 1086.

DOI : 10.3389/fphys.2020.01086

[12] Data driven approximation of parametrized PDEs by reduced basis and neural networks

N. Dal SantoS. DeparisL. Pegolotti

Journal Of Computational Physics

2020

Vol. 416, p. 109550.

DOI : 10.1016/j.jcp.2020.109550

[13] Analysis of morphological and haemodynamical indexes in abdominal aortic aneurysms as preliminary indicators of intraluminal thrombus deposition

C. M. ColciagoS. DeparisM. DomaninC. RiccobeneE. Schenone  et al.

Biomechanics and Modeling in Mechanobiology

2020

Vol. 19, num. 3, p. 1035 - 1053.

DOI : 10.1007/s10237-019-01269-4

2019

[14] Coupling non-conforming discretizations of PDEs by spectral approximation of the Lagrange multiplier space

S. DeparisA. IubattiL. Pegolotti

ESAIM: Mathematical Modelling and Numerical Analysis

2019

Vol. 53, num. 5, p. 1667 - 1694.

DOI : 10.1051/m2an/2019030

2018

[15] Application of the Rosenbrock methods to the solution of unsteady 3D incompressible Navier-Stokes equations

S. DeparisM. O. DevilleF. MenghiniL. PegolottiA. Quarteroni

Computers & Fluids

2018

Vol. 179, p. 112 - 122.

DOI : 10.1016/j.compfluid.2018.10.005

[16] Reduced Numerical Approximation of Reduced Fluid-Structure Interaction Problems With Applications in Hemodynamics

C. M. ColciagoS. Deparis

Frontiers in Applied Mathematics and Statistics

2018

Vol. 4, p. 18.

DOI : 10.3389/fams.2018.00018

[17] Multi space reduced basis preconditioners for large-scale parametrized PDEs

N. Dal SantoS. DeparisA. ManzoniA. Quarteroni

SIAM Journal on Scientific Computing

2018

Vol. 40, num. 2, p. A954 - A983.

DOI : 10.1137/16M1089149

[18] The LifeV library: engineering mathematics beyond the proof of concept

L. BertagnaS. DeparisL. FormaggiaD. FortiA. Veneziani

ArXiv

2018

Vol. [math.NA], p. 1710.06596.

2017

[19] A parallel algorithm for the solution of large-scale nonconforming fluid-structure interaction problems in hemodynamics

D. FortiA. QuarteroniS. Deparis

Journal of Computational Mathematics -International Edition-

2017

Vol. 35, num. 3, p. 363 - 380.

DOI : 10.4208/jcm.1702-m2016-0630

[20] A Monolithic Approach to Fluid–Composite Structure Interaction

D. FortiM. BukacA. QuainiS. CanicS. Deparis

Journal of Scientific Computing

2017

Vol. 72, p. 396 - 421.

DOI : 10.1007/s10915-017-0363-5

Research

Errata Corrige

In A Rescaled Localized Radial Basis Function Interpolation on Non-Cartesian and Nonconforming Grids, Deparis, Simone; Forti, Davide; Quarteroni, Alfio, Siam Journal on Scientific Computing (ISSN: 1064-8275), vol. 36, num. 6, 2014. ( http://infoscience.epfl.ch/record/204740) Reference [10] shall be corrected and point to M. Lombardi, N. Parolini, A. Quarteroni, Radial basis functions for inter-grid interpolation and mesh motion in FSI problems, Computer Methods in Applied Mechanics and Engineering, Volume 256, 1 April 2013, Pages 117-131, ISSN 0045-7825, http://dx.doi.org/10.1016/j.cma.2012.12.019

Teaching & PhD

Past courses

Analysis 1, Linear Algebra, Numerical analysis,
Programming concepts in scientific computing,
Geometry, Numerical analysis and Computational Mathematics, Numerical approximation of partial differential equations

PhD Students

Micol Bassanini, Fabio Marcinno, Manuela Pineros-Rodriguez

Past EPFL PhD Students

Luca Pegolotti, Riccardo Tenderini

Paolo Crosetto, Adelmo Cristiano Innocenza Malossi, Gwenol Grandperrin, Radu Popescu, Claudia Maria Colciago, Davide Forti

Courses

Linear algebra (flipped classroom)

MATH-111(pi)

The purpose of the course is to introduce the basic notions of linear algebra and its applications. This class is given with a flipped design.

Teaching STEM: a problem solving approach

ENG-644

Problem solving is a core engineering skill. This course explores relevant heuristics, epistemologies, metacognitive skills and evidence-informed teaching strategies for developing problem solving skills that transfer from paper-based exercises to complex, real world engineering situations.