Aleksandra Radenovic
Full Professor
aleksandra.radenovic@epfl.ch +41 21 693 73 71 http://lben.epfl.ch
Citizenship: Croatian and Swiss
Birth date: 27.07.1975
EPFL STI IBI-STI LBEN
BM 2140 (Bâtiment BM)
Station 17
1015 Lausanne
+41 21 693 73 71
+41 21 693 11 61
Office:
BM 2140
EPFL
>
STI
>
IBI-STI
>
LBEN
Web site: Web site: https://lben.epfl.ch/
+41 21 693 73 71
EPFL
>
SV
>
SV-SSV
>
SSV-ENS
Web site: Web site: https://sv.epfl.ch/education
+41 21 693 73 71
EPFL
>
STI
>
STI-SMT
>
SMT-ENS
+41 21 693 73 71
EPFL
>
VPA
>
VPA-FAC
>
CEAE
+41 21 693 73 71
EPFL
>
STI
>
IBI-STI
>
IBI-STI-GE
Web site: Web site: https://bioengineering.epfl.ch/
+41 21 693 73 71
EPFL
>
SV
>
IBI-SV
>
IBI-SV-GE
Web site: Web site: https://bioengineering.epfl.ch/
Fields of expertise
Solid State Nanopores
2-D materials
Optical tweezers
Second Harmonic Generation
Super -resolution microscopy
Signaling
Curriculum Vitae
Curriculum Vitae CVMission
Many biomolecules show remarkably more complex behavior at the single-molecule level than it is observed in bulk, ensemble-averaged experiments. It is now evident that sparsely populated molecular sub-states are vital for the biological function. Insights into complex behavior can be gained through manipulation, imaging or sensing of single biomolecules.Single-molecule techniques can provide us with extraordinarily clear and often surprising views of biomolecules in action. Development of appropriate instrumentation has been identified as the key ingredient for advances in biophysical sciences. Three most important examples here are single molecule localization microscopy (SMLM), optical tweezers and nanopores. SMLM made it possible to see by visualizing single fluorophores in living cells while laser-based optical tweezers allowed us to touch with experiments on physical forces involved in stretching and binding of biomolecules, while nanopores, the simplest and the most recent single molecule technique allows for rapid and high-throughput biosensing and discrimination of attomolar molecule concentrations.
Biography
From April 2021 Full Professor2015 -2021 Associate Professor
2008-2015 Tenure-Track Assistant Professor
2004-2007 Postdoc at the University of California, Berkeley in the group of Prof.Liphardt
2003 PhD student of Prof. Dietler in Laboratory of Physics of Living Matter, University of Lausanne
1999 Diploma thesis on the subject of the Raman spectroscopy of beta carotene
1994-1999 Physics department at the University of Zagreb
1994 baccalaureate, Classical gymnasium
Current work
My lab works in the research field that can be termed single molecule biophysics. We develop techniques and methodologies based on optical imaging, biosensing and single molecule manipulation with the aim to monitor the behavior of individual biological molecules and complexes in vitro and in live cells. Our current research is focused on three major directions:(i) Developing and using nanopores as platform for molecular sensing and manipulation. In particular we focus on solid-state nanopores realized either in glass nanocapillaries, or on suspended 2d-material membranes and standard silicon-nitride membranes.
(ii) Studying how biomolecules function, especially how proteins and nucleic acids interact, using force-based manipulation single-molecule techniques, in particular optical tweezers, optical wrench system, Anti- Brownian Electrokinetic (ABEL) trap and combination of nanopore/nanocapillaries with OT.
(iii) Developing super-resolution optical microscopy, based on single molecule localizations (SMLM) in cells with molecular-scale resolution, with an aim to extract quantitative information.
Awards/Achievements
2016 CCMX Materials challenge award2015 SNSF-ERC Consolidator Grant
2010 ERC Starting Grant
2003 Fellowship of the Swiss National Science Foundation
Patents
Patent Number: WO07079411ALIGNMENT, TRANSPORTATION AND INTEGRATION OF NANOWIRES USING OPTICAL TRAPPING
Publication date: 2007-07-12.
Link
Patent Number:PCT/IB2013/052093
MANUFACTURING OF ORIFICES IN GLASS LIKE MATERIALS, E.G. NANOCAPILLARIES AND OBJECT OBTAINED ACCORDING TO THIS PROCESS
Publication date: 2014-25-03
Link US patent
Patent Number: WO2015121394
MOLECULAR SENSING DEVICE-
Publication date: 2015-20-08
Link
Patent Number: WO2016142925A1
NANOPORE FORMING METHOD AND USES THEREOF WO2016142925A1
Publication date :2016-15-09
Link
Patent Number: WO2018002099 OSMOTIC POWER GENERATION IN 2D NANOPORES
Publication date :2018-15-09
Publication date :2016-15-09 Link Link US patent
Patent application:BENCHMARKING OF SINGLE IMAGING DATASETS19 180 900.3 - Your ref.: 6.1943 - Our ref.: 34623EP Patent applicationSYSTEMS AND METHODS FOR DIGITAL INFORMATION DECODING AND DATA STORAGE IN HYBRID MACROMOLECULES
2020 September
Awards
2021 : ERC Advanced Grant
2016 : CCMX Materials challenge award
2015 : SNSF-ERC Consolidator Grant
2010 : ERC Starting Grant
2003 : SNSF Fellowship
Publications
Infoscience publications
LBEN Thesis
[16] 2D MoS2 Nanopores: Wafer-scale Fabrication and Monolayer Stability for Long-term Single-Molecule Sensing
Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-9538.[15] Molybdenum disulphide nanoporous membranes as nanofluidic platforms - large-area engineering and study
Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-8787.[14] Multidisciplinary Investigation of the Gut-Brain Ecosystem in a Model of Alzheimer's Disease
Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-8532.[13] Exploring optically active defects in wide-bandgap materials using fluorescence microscopy
Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-8204.[12] Biophysical applications of correlative scanning probe and super-resolution microscopy
Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-9021.[11] Fundamental Applications of Nanopores: Controlled DNA Translocations to Nanofluidics
Lausanne, EPFL, 2020. DOI : 10.5075/epfl-thesis-7693.[10] Electrochemical and morphological engineering of 2D materials for nanopore sensing
Lausanne, EPFL, 2020. DOI : 10.5075/epfl-thesis-7588.[9] Development of novel experimental and computational methods for three-dimensional coherent and super-resolution microscopy
Lausanne, EPFL, 2020. DOI : 10.5075/epfl-thesis-7942.[8] 2D nanopores: fabrication, energy harvesting and field-effect sensing
Lausanne, EPFL, 2019. DOI : 10.5075/epfl-thesis-9516.[7] Nanocapillaries combined with optical tweezers as a single molecule technique for studying DNA-protein complexes
Lausanne, EPFL, 2017. DOI : 10.5075/epfl-thesis-7608.[6] Probing chemical structures and physical processes with nanopores
Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-7082.[5] Nanoscale Magnetometry with Single Fluorescent Nanodiamonds Manipulated in an Anti-Brownian Electrokinetic Trap
Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-6972.[4] Analytical Methods, Correlative Microscopy and Software Tools for Quantitative Single Molecule Localization Microscopy
Lausanne, EPFL, 2015. DOI : 10.5075/epfl-thesis-6726.[3] Alkaline niobate nanostructures as opto-mechanical probes
Lausanne, EPFL, 2014. DOI : 10.5075/epfl-thesis-6214.[2] Nanopore sensing of single molecules application to RNAP-DNA complexes, fabrication of graphene-nanopore devices and translocation algorithm analysis
Lausanne, EPFL, 2012. DOI : 10.5075/epfl-thesis-5570.[1] Investigating the Impact of Single Molecule Fluorescence Dynamics on Photo Activated Localization Microscopy Experiments
Lausanne, EPFL, 2012. DOI : 10.5075/epfl-thesis-5517.Peer reviewed journal articles
2024
[159] Fluorescence microscopy: A statistics-optics perspective
Reviews Of Modern Physics. 2024-06-05. DOI : 10.1103/RevModPhys.96.025003.[158] CVD graphene contacts for lateral heterostructure MoS2 field effect transistors
Npj 2D Materials And Applications. 2024-05-10. DOI : 10.1038/s41699-024-00471-y.[157] Label-Free Techniques for Probing Biomolecular Condensates
Acs Nano. 2024-04-12. DOI : 10.1021/acsnano.4c01534.[156] Nanofluidic logic with mechano-ionic memristive switches
Nature Electronics. 2024-03-19. DOI : 10.1038/s41928-024-01137-9.[155] Open-source microscope add-on for structured illumination microscopy
Nature Communications. 2024-02-20. DOI : 10.1038/s41467-024-45567-7.[154] AI-driven detection and analysis of label-free protein aggregates
Nature Reviews Molecular Cell Biology. 2024-02-08. DOI : 10.1038/s41580-024-00708-0.2023
[153] Liquid-activated quantum emission from native hBN defects for nanofluidic sensing
Nature Materials. 2023-08-31. DOI : 10.1038/s41563-023-01658-2.[152] Confinement-Controlled Water Engenders Unusually High Electrochemical Capacitance
Journal Of Physical Chemistry Letters. 2023-07-17. DOI : 10.1021/acs.jpclett.3c01498.[151] Selective Growth of van der Waals Heterostructures Enabled by Electron-Beam Irradiation
Acs Applied Materials & Interfaces. 2023-07-07. DOI : 10.1021/acsami.3c02892.[150] Nature-Inspired Stalactite Nanopores for Biosensing and Energy Harvesting
Advanced Materials. 2023-07-06. DOI : 10.1002/adma.202302827.[149] Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds
Nature Nanotechnology. 2023-06-19. DOI : 10.1038/s41565-023-01412-4.[148] Nanoscale thermal control of a single living cell enabled by diamond heater-thermometer
Scientific Reports. 2023-05-26. DOI : 10.1038/s41598-023-35141-4.[147] The Three-Phase Contact Potential Difference Modulates the Water Surface Charge
Journal Of Physical Chemistry Letters. 2023-05-16. DOI : 10.1021/acs.jpclett.3c00479.[146] The Three-Phase Contact Potential Difference Modulates the Water Surface Charge
Journal Of Physical Chemistry Letters. 2023-05-16. DOI : 10.1021/acs.jpclett.3c00479.[145] Optical imaging of the small intestine immune compartment across scales
Communications Biology. 2023-03-31. DOI : 10.1038/s42003-023-04642-3.[144] High durability and stability of 2D nanofluidic devices for long-term single-molecule sensing
Npj 2D Materials And Applications. 2023-02-23. DOI : 10.1038/s41699-023-00373-5.[143] Defect engineering of 2D material for biosensing applications
2023-02-10. p. 278A-278A. DOI : 10.1016/j.bpj.2022.11.1584.[142] Imaging of interactions of biomolecules with nanomaterials with interferometric scattering microscopy
2023-02-10. p. 153A-153A.[141] Substitutional p‐type Doping in NbS2‐MoS2 Lateral Heterostructures Grown by MOCVD
Advanced Materials. 2023-01-16. DOI : 10.1002/adma.202209371.[140] Synthesis of Fluorescent Cyclic Peptides via Gold(I)-Catalyzed Macrocyclization
Journal of the American Chemical Society. 2023. DOI : 10.1021/jacs.3c09261.[139] A large-scale integrated vector–matrix multiplication processor based on monolayer molybdenum disulfide memories
Nature Electronics. 2023. DOI : 10.1038/s41928-023-01064-1.[138] How to Achieve Large-Area Ultra-Fast Operation of MoS 2 Monolayer Flash Memories?
IEEE Nanotechnology Magazine. 2023. DOI : 10.1109/MNANO.2023.3297118.2022
[137] High-Throughput Nanopore Fabrication and Classification Using Xe-Ion Irradiation and Automated Pore-Edge Analysis
Acs Nano. 2022-09-26. DOI : 10.1021/acsnano.2c05201.[136] Wafer-scale MoS2 with water-vapor assisted showerhead MOCVD
Nanoscale Advances. 2022-09-02. DOI : 10.1039/d2na00409g.[135] Stress induced delamination of suspended MoS2 in aqueous environments
Physical Chemistry Chemical Physics. 2022-07-29. DOI : 10.1039/d2cp02094g.[134] Stable Al2O3 Encapsulation of MoS2 ‐FETs Enabled by CVD Grown h‐BN
Advanced Electronic Materials. 2022-04-29. DOI : 10.1002/aelm.202200123.[133] Three-step, transfer-free growth of MoS2/WS2/graphene vertical van der Waals heterostructure
2D Materials. 2022-04-01. DOI : 10.1088/2053-1583/ac5f6d.[132] Engineering Optically Active Defects in Hexagonal Boron Nitride Using Focused Ion Beam and Water
Acs Nano. 2022-03-22. DOI : 10.1021/acsnano.1c07086.[131] High Performance Semiconducting Nanosheets via a Scalable Powder-Based Electrochemical Exfoliation Technique
Acs Nano. 2022-03-15. DOI : 10.1021/acsnano.1c10739.[130] Statistical distortion of supervised learning predictions in optical microscopy induced by image compression
Scientific Reports. 2022-03-02. DOI : 10.1038/s41598-022-07445-4.[129] Zero-Bias Power-Detector Circuits based on MoS<sub>2</sub> Field-Effect Transistors on Wafer-Scale Flexible Substrates
Advanced Materials. 2022-02-17. DOI : 10.1002/adma.202108469.[128] Low-Power Artificial Neural Network Perceptron Based on Monolayer MoS2
ACS Nano. 2022-02-16. DOI : 10.1021/acsnano.1c07065.[127] Bacterial nanopores open the future of data storage
2022-01-01. International Electron Devices Meeting (IEDM), San Francisco, CA, Dec 03-07, 2022. DOI : 10.1109/IEDM45625.2022.10019421.[126] Flat-Band-Induced Many-Body Interactions and Exciton Complexes in a Layered Semiconductor
Nano Letters. 2022-11-08. DOI : 10.1021/acs.nanolett.2c02965.2021
[125] Time-Resolved Scanning Ion Conductance Microscopy for Three-Dimensional Tracking of Nanoscale Cell Surface Dynamics
Acs Nano. 2021-11-23. DOI : 10.1021/acsnano.1c05202.[124] Rhesus Blood Typing within a Few Seconds by Packing-Enhanced Nanoscattering on Individual Erythrocytes
Analytical Chemistry. 2021-11-16. DOI : 10.1021/acs.analchem.1c03590.[123] Superconducting 2D NbS2 Grown Epitaxially by Chemical Vapor Deposition
ACS Nano. 2021-11-10. DOI : 10.1021/acsnano.1c07956.[122] Anomalous interfacial dynamics of single proton charges in binary aqueous solutions
Science Advances. 2021-10-01. DOI : 10.1126/sciadv.abg8568.[121] Bio-orthogonal Red and Far-Red Fluorogenic Probes for Wash-Free Live-Cell and Super-resolution Microscopy
Acs Central Science. 2021-09-22. DOI : 10.1021/acscentsci.1c00703.[120] Experimental Combination of Super-Resolution Optical Fluctuation Imaging with Structured Illumination Microscopy for Large Fields-of-View
Acs Photonics. 2021-08-18. DOI : 10.1021/acsphotonics.1c00668.[119] Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy
Nature Communications. 2021-07-27. DOI : 10.1038/s41467-021-24901-3.[118] Direct Growth of Hexagonal Boron Nitride on Photonic Chips for High-Throughput Characterization
Acs Photonics. 2021-07-21. DOI : 10.1021/acsphotonics.1c00165.[117] Adaptive optics enables multimode 3D super-resolution microscopy via remote focusing
Nanophotonics. 2021-06-10. DOI : 10.1515/nanoph-2021-0108.[116] High resolution optical projection tomography platform for multispectral imaging of the mouse gut
Biomedical Optics Express. 2021-06-01. DOI : 10.1364/BOE.423284.[115] Parameter-free rendering of single-molecule localization microscopy data for parameter-free resolution estimation
Communications Biology. 2021-05-11. DOI : 10.1038/s42003-021-02086-1.[114] From Water Solutions to Ionic Liquids with Solid State Nanopores as a Perspective to Study Transport and Translocation Phenomena
Small. 2021-05-06. DOI : 10.1002/smll.202100777.[113] Super-resolved Optical Mapping of Reactive Sulfur-Vacancies in Two-Dimensional Transition Metal Dichalcogenides
Acs Nano. 2021-04-27. DOI : 10.1021/acsnano.1c00373.[112] Wetting of nanopores probed with pressure
Physical Chemistry Chemical Physics. 2021-02-28. DOI : 10.1039/d1cp00253h.[111] Electrochemical Functionalization of Selectively Addressed MoS2 Nanoribbons for Sensor Device Fabrication
Acs Applied Nano Materials. 2021-02-26. DOI : 10.1021/acsanm.0c02628.[110] Decoding Digital Information Stored in Polymer by Nanopore
2021-02-12. p. 98A-98A. DOI : 10.1016/j.bpj.2020.11.802.2020
[109] Aerolysin nanopores decode digital information stored in tailored macromolecular analytes
Science Advances. 2020-12-09. DOI : 10.1126/sciadv.abc2661.[108] Recent Advances and Prospects in the Research of Nascent Adhesions
Frontiers In Physiology. 2020-12-04. DOI : 10.3389/fphys.2020.574371.[107] Prospects of Observing Ionic Coulomb Blockade in Artificial Ion Confinements
Entropy. 2020-12-01. DOI : 10.3390/e22121430.[106] Pressure-Induced Enlargement and Ionic Current Rectification in Symmetric Nanopores
Nano Letters. 2020-11-11. DOI : 10.1021/acs.nanolett.0c03083.[105] Microscopic Detection Analysis of Single Molecules in MoS2 Membrane Nanopores
ACS Nano. 2020-11-06. DOI : 10.1021/acsnano.0c08382.[104] Logic-in-memory based on an atomically thin semiconductor
Nature. 2020-11-05. DOI : 10.1038/s41586-020-2861-0.[103] Towards artificial mechanosensing
Nature Materials. 2020-10-01. DOI : 10.1038/s41563-020-00811-5.[102] Self-Blinking Dyes Unlock High-Order and Multiplane Super-Resolution Optical Fluctuation Imaging
Acs Nano. 2020-07-28. DOI : 10.1021/acsnano.0c04602.[101] Polymer Coatings to Minimize Protein Adsorption in Solid-State Nanopores
Small Methods. 2020-07-16. DOI : 10.1002/smtd.202000177.[100] High-Throughput Nanocapillary Filling Enabled by Microwave Radiation for Scanning Ion Conductance Microscopy Imaging
ACS Applied Nano Materials. 2020-07-02. DOI : 10.1021/acsanm.0c01345.[99] Spectral cross-cumulants for multicolor super-resolved SOFI imaging
Nature Communications. 2020-06-15. DOI : 10.1038/s41467-020-16841-1.[98] Direct observation of water-mediated single-proton transport between hBN surface defects
Nature Nanotechnology. 2020-05-25. DOI : 10.1038/s41565-020-0695-4.[97] Wafer-Scale Fabrication of Nanopore Devices for Single-Molecule DNA Biosensing using MoS2
Small Methods. 2020-05-11. DOI : 10.1002/smtd.202000072.[96] Nanocapillary confinement of imidazolium based ionic liquids
Nanoscale. 2020-04-28. DOI : 10.1039/d0nr01164a.[95] High-speed multiplane structured illumination microscopy of living cells using an image-splitting prism
Nanophotonics. 2020-01-01. DOI : 10.1515/nanoph-2019-0346.2019
[94] Nanoscale Selective Passivation of Electrodes Contacting a 2D Semiconductor
Advanced Functional Materials. 2019-12-11. DOI : 10.1002/adfm.201907860.[93] Waveguide-Based Platform for Large-FOV Imaging of Optically Active Defects in 2D Materials
Acs Photonics. 2019-12-01. DOI : 10.1021/acsphotonics.9b01103.[92] Transverse Detection of DNA Using a MoS2 Nanopore
Nano Letters. 2019-12-01. DOI : 10.1021/acs.nanolett.9b04180.[91] Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores
Nature Communications. 2019-10-29. DOI : 10.1038/s41467-019-12690-9.[90] Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2
Nano Research. 2019-10-01. DOI : 10.1007/s12274-019-2502-9.[89] 2D MoS2 nanopores: ionic current blockade height for clustering DNA events
2D Materials. 2019-10-01. DOI : 10.1088/2053-1583/ab2c38.[88] 2D materials as an emerging platform for nanopore-based power generation
Nature Reviews Materials. 2019-09-01. DOI : 10.1038/s41578-019-0126-z.[87] Parameter-free image resolution estimation based on decorrelation analysis
Nature Methods. 2019-08-26. DOI : 10.1038/s41592-019-0515-7.[86] Facile Production of Hexagonal Boron Nitride Nanoparticles by Cryogenic Exfoliation
Nano Letters. 2019-08-01. DOI : 10.1021/acs.nanolett.9b01913.[85] Light-Enhanced Blue Energy Generation Using MoS2 Nanopores
Joule. 2019-06-19. DOI : 10.1016/j.joule.2019.04.011.[84] Supervised learning to quantify amyloidosis in whole brains of an Alzheimer's disease mouse model acquired with optical projection tomography
Biomedical Optics Express. 2019-06-01. DOI : 10.1364/BOE.10.003041.[83] Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging
Nature Communications. 2019-03-20. DOI : 10.1038/s41467-019-09247-1.[82] Wide-Field Spectral Super-Resolution Mapping of Optically Active Defects in Hexagonal Boron Nitride
Nano Letters. 2019-03-13. DOI : 10.1021/acs.nanolett.9b00178.[81] Spatiotemporal Imaging of Water in Operating Voltage-Gated Ion Channels Reveals the Slow Motion of Interfacial Ions
Nano Letters. 2019-10-03. DOI : 10.1021/acs.nanolett.9b02024.[80] Identifying microbial species by single-molecule DNA optical mapping and resampling statistics
NAR Genomics and Bioinformatics. 2019-10-05. DOI : 10.1093/nargab/lqz007.[79] Fluorescent Nanodiamonds as Versatile Intracellular Temperature Sensors
CHIMIA International Journal for Chemistry. 2019-02-01. DOI : 10.2533/chimia.2019.73.[78] Fabrication and practical applications of molybdenum disulfide nanopores
Nature Protocols. 2019-03-22. DOI : 10.1038/s41596-019-0131-0.[77] Detecting topological variations of DNA at single-molecule level
Nature Communications. 2019. DOI : 10.1038/s41467-018-07924-1.2018
[76] Transverse Detection of DNA in a MoS2 Nanopore
Biophysical Journal. 2018. DOI : 10.1016/j.bpj.2017.11.1005.[75] Single step synthesis of Schottky-like hybrid graphene - titania interfaces for efficient photocatalysis
Scientific Reports. 2018-05-25. DOI : 10.1038/s41598-018-26447-9.[74] Orthogonal Tip-to-Tip Nanocapillary Alignment Allows for Easy Detection of Fluorescent Emitters in Femtomolar Concentrations
Nano Letters. 2018-04-04. DOI : 10.1021/acs.nanolett.8b00831.[73] Imaging of Optically Active Defects with Nanometer Resolution
Nano Letters. 2018-02-02. DOI : 10.1021/acs.nanolett.7b04819.[72] Centimeter-Sized Single-Orientation Monolayer Hexagonal Boron Nitride With or Without Nanovoids
Nano Letters. 2018-01-09. DOI : 10.1021/acs.nanolett.7b04752.2017
[71] Investigating Focal Adhesion Substructures by Localization Microscopy
Biophysical Journal. 2017. DOI : 10.1016/j.bpj.2017.09.032.[70] Combining PALM and SOFI for quantitative imaging of focal adhesions in living cells
2017. SPIE Photonics West, San Francisco, 27 January-2 February 2017. DOI : 10.1117/12.2252865.[69] Geometrical Effect in 2D Nanopores
Nano Letters. 2017. DOI : 10.1021/acs.nanolett.7b01091.2016
[68] Fluorescent Nanodiamonds in Biological and Biomedical Imaging and Sensing
Super-Resolution Imaging in Biomedicine; Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016.[67] Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions
Nature Communications. 2016. DOI : 10.1038/ncomms13693.[66] Single Molecule Localization and Discrimination of DNA–Protein Complexes by Controlled Translocation Through Nanocapillaries
Nano Letters. 2016. DOI : 10.1021/acs.nanolett.6b04165.[65] On characterizing protein spatial clusters with correlation approaches
Scientific Reports. 2016. DOI : 10.1038/srep31164.[64] Single-layer MoS2 nanopores as nanopower generators
Nature. 2016. DOI : 10.1038/nature18593.[63] Observation of ionic Coulomb blockade in nanopores
Nature Materials. 2016. DOI : 10.1038/nmat4607.2015
[62] Molybdenum Disulfide Nanopores: Why 3 Atoms are Better than One?
2015. 59th Annual Meeting of the Biophysical-Society, Baltimore, MD, FEB 07-11, 2015. p. 489A-489A. DOI : 10.1016/j.bpj.2014.11.2677.[61] Investigating Cellular Focal Adhesions on Nano-Patterned Substrates with Dual Color Photo-Activated Localization Microscopy
2015. 59th Annual Meeting of the Biophysical-Society, Baltimore, MD, FEB 07-11, 2015. p. 359A-359A. DOI : 10.1016/j.bpj.2014.11.1971.[60] Single florescent nanodiamond in a three dimensional ABEL trap
Scientific Reports. 2015. DOI : 10.1038/srep16669.[59] Revealing GPCR oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function
FEBS Journal. 2015. DOI : 10.1111/febs.13577.[58] Large-area MoS2 grown using H2S as the sulphur source
2D Materials. 2015. DOI : 10.1088/2053-1583/2/4/044005.[57] Relevance of the Drag Force during Controlled Translocation of a DNA–Protein Complex through a Glass Nanocapillary
Nano Letters. 2015. DOI : 10.1021/acs.nanolett.5b03264.[56] Identification of single nucleotides in MoS2 nanopores
Nature Nanotechnology. 2015. DOI : 10.1038/nnano.2015.219.[55] Preface for a special issue of Microelectronic Engineering Micro/Nano Biotechnologies & Systems 2014
2015. p. vi-vii. DOI : 10.1016/S0167-9317(15)00341-X.[54] High-Resolution Correlative Microscopy: Bridging the Gap between Single Molecule Localization Microscopy and Atomic Force Microscopy
Nano Letters. 2015. DOI : 10.1021/acs.nanolett.5b00572.[53] Electrochemical Reaction in Single Layer MoS2: nanopores opened atom by atom
Nano Letters. 2015. DOI : 10.1021/acs.nanolett.5b00768.[52] Large-Area Epitaxial Monolayer MoS2
ACS Nano. 2015. DOI : 10.1021/acsnano.5b01281.[51] Accounting for Limited Detection Efficiency and Localization Precision in Cluster Analysis in Single Molecule Localization Microscopy
PLOS ONE. 2015. DOI : 10.1371/journal.pone.0118767.[50] The emergence of nanopores in next-generation sequencing
Nanotechnology. 2015. DOI : 10.1088/0957-4484/26/7/074003.2014
[49] Measurement of the Position-Dependent Electrophoretic Force on DNA in a Glass Nanocapillary
Nano Letters. 2014. DOI : 10.1021/nl503272r.[48] High throughput second harmonic imaging for label-free biological applications
Optics Express. 2014. DOI : 10.1364/OE.22.031102.[47] Probing the size of proteins with glass nanopores
Nanoscale. 2014. DOI : 10.1039/C4NR05001K.[46] Electron Spin Resonance of Nitrogen-Vacancy Defects Embedded in Single Nanodiamonds in an ABEL Trap
Nano Letters. 2014. DOI : 10.1021/nl5023964.[45] Shrinking Nanocapillaries to Low Noise Nanopores for Single Molecule Detection
2014. 58th Annual Meeting of the Biophysical-Society, San Francisco, CA, FEB 15-19, 2014. p. 633A-633A. DOI : 10.1016/j.bpj.2013.11.3499.[44] Combination of Optical Tweezers with Nanocapillaries as System for Estimation of DNA/Ligand Interactions
2014. 58th Annual Meeting of the Biophysical-Society, San Francisco, CA, FEB 15-19, 2014. p. 393A-393A. DOI : 10.1016/j.bpj.2013.11.2221.[43] Challenges in quantitative single molecule localization microscopy
FEBS Letters. 2014. DOI : 10.1016/j.febslet.2014.06.014.[42] Progress in quantitative single-molecule localization microscopy
Histochemistry and Cell Biology. 2014. DOI : 10.1007/s00418-014-1217-y.[41] Probing Rotational and Translational Diffusion of Nanodoublers in Living Cells on Microsecond Time Scales
Nano Letters. 2014. DOI : 10.1021/nl500356u.[40] Atomically Thin Molybdenum Disulfide Nanopores with High Sensitivity for DNA Translocation
ACS Nano. 2014. DOI : 10.1021/nn406102h.[39] Light Generation and Harvesting in a van der Waals Heterostructure
ACS Nano. 2014. DOI : 10.1021/nn500480u.[38] Nanopore Integrated Nanogaps for DNA Detection
Nano Letters. 2014. DOI : 10.1021/nl403849g.[37] ComEA Is Essential for the Transfer of External DNA into the Periplasm in Naturally Transformable Vibrio cholerae Cells
PLoS Genetics. 2014. DOI : 10.1371/journal.pgen.1004066.2013
[36] Detection of RNAP-DNA complexes using solid state nanopores
2013. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3-7 07 2013. p. 4106-4109. DOI : 10.1109/EMBC.2013.6610448.[35] DNA Trans location through Low-Noise Glass Nanopores
Acs Nano. 2013. DOI : 10.1021/nn405029j.[34] MosaicIA: an ImageJ/Fiji plugin for spatial pattern and interaction analysis
Bmc Bioinformatics. 2013. DOI : 10.1186/1471-2105-14-349.[33] Enhancement of Second Harmonic Signal in Nanofabricated Cones
Nano Letters. 2013. DOI : 10.1021/nl403279y.[32] Detecting the translocation of DNA through a nanopore using graphene nanoribbons
Nature Nanotechnology. 2013. DOI : 10.1038/Nnano.2013.240.[31] Controllable Shrinking and Shaping of Glass Nanocapillaries under Electron Irradiation
Nano Letters. 2013. DOI : 10.1021/nl400304y.[30] Enlightening G-protein-coupled receptors on the plasma membrane using super-resolution photoactivated localization microscopy
Biochemical Society Transactions. 2013. DOI : 10.1042/Bst20120250.[29] Ultrasensitive photodetectors based on monolayer MoS2
Nature Nanotechnology. 2013. DOI : 10.1038/nnano.2013.100.2012
[28] Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy
Optical Nanoscopy. 2012. DOI : 10.1186/2192-2853-1-9.[27] Alkaline niobate nanowires as opto-mechanical probes
2012. Conference on Optical Trapping and Optical Micromanipulation IX. DOI : 10.1117/12.929466.[26] Fast and automatic processing of multi-level events in nanopore translocation experiments
Nanoscale. 2012. DOI : 10.1039/c2nr30951c.[25] Cell-type-specific 2 adrenergic receptor clusters identified using photo-activated localization microscopy are not lipid raft related, but depend on actin cytoskeleton integrity
Journal of Biological Chemistry. 2012. DOI : 10.1074/jbc.M111.329912.[24] Nanopore Detection of Single Molecule RNAP–DNA Transcription Complex
Nano Letters. 2012. DOI : 10.1021/nl3002827.[23] Micro-fabrication process for small transport devices of layered manganite
2012. THE 56TH ANNUAL CONFERENCE ON MAGNETISM AND MAGNETIC MATERIALS, Phoenix, Arizona, USA, October, 30- November 3, 2011. DOI : 10.1063/1.3675995.2011
[22] Niobates Nanowires: Synthesis, Characterization and Applications
Nanowires - Implementations and Applications; In Tech, 2011. p. 509-524.[21] Nonlinear Optical Response in Single Alkaline Niobate Nanowires
Nano Letters. 2011. DOI : 10.1021/nl201085b.[20] Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking
PLoS ONE. 2011. DOI : 10.1371/journal.pone.0022678.[19] Identification of clustering artifacts in photoactivated localization microscopy
Nature Methods. 2011. DOI : 10.1038/nmeth.1627.[18] Single-layer MoS2 transistors
Nature Nanotechnology. 2011. DOI : 10.1038/nnano.2010.279.2010
[17] ssDNA Binding Reveals the Atomic Structure of Graphene
Langmuir. 2010. DOI : 10.1021/la102518t.[16] Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes
Neurobiology of Aging. 2010. DOI : 10.1016/j.neurobiolaging.2008.08.019.[15] Photoactivatable Fluorescent Protein mEos2 Displays Repeated Photoactivation after a Long-Lived Dark State in the Red Photoconverted Form
The Journal of Physical Chemistry Letters. 2010. DOI : 10.1021/jz1003523.2008
[14] Fabrication of 10 nm diameter hydrocarbon nanopores
Applied Physics Letters. 2008. DOI : 10.1063/1.3012376.2007
[13] Controlling DNA capture and propagation through artificial nanopores
Nano Letters. 2007. DOI : 10.1021/nl0714334.[12] Electrophoretic threading kinetics of optically trapped DNA through synthetic nanopores
Biophysical Journal. 2007.[11] Tunable nanowire nonlinear optical probe
Nature. 2007. DOI : 10.1038/nature05921.2006
[10] EFTEM Imaging of ZnO-TiO2 Core-Shell Nanowires and TiO2 Nanotubes
2006. p. 474. DOI : 10.1017/S1431927606069261.[9] Optical trapping and integration of semiconductor nanowire assemblies in water
Nature Materials. 2006. DOI : 10.1038/nmat1563.[8] Beta-amyloid deposition and Alzheimer's type changes induced by Borrelia spirochetes
Neurobiology of Aging. 2006. DOI : 10.1016/j.neurobiolaging.2005.01.018.[7] ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells
Journal of Physical Chemistry B. 2006. DOI : 10.1021/jp0648644.[6] Study of DNA in "glasslike state" by atomic force microscopy: Importance of substrates
Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers. 2006. DOI : 10.1143/JJAP.45.2345.2004
[5] Complex characterization of physiology solution based magnetic fluid
Indian Journal of Engineering and Materials Sciences. 2004.2003
[4] Study of probes and substrates for low temperature atomic force microscopy and biological applications
Acta Physica Polonica A. 2003. DOI : 10.12693/APhysPolA.104.373.[3] A low-temperature ultrahigh vacuum atomic force microscope for biological applications
Review of Scientific Instruments. 2003. DOI : 10.1063/1.1532840.[2] Low noise current-to-voltage converter and vibration damping system for a low-temperature ultrahigh vacuum scanning tunneling microscope
Review of Scientific Instruments. 2003. DOI : 10.1063/1.1533100.[1] Characterization of atomic force microscope probes at low temperatures
Journal of Applied Physics. 2003. DOI : 10.1063/1.1604952.Teaching & PhD
Teaching
Life Sciences Engineering
Microengineering