Alexandre Caboussat

EPFL SB MATH GR-PI
MA C2 644 (Bâtiment MA)
Station 8
1015 Lausanne

Office: MA C2 644
EPFLSBMATHGR-PI

EPFL SB MATH GR-PI
MA C2 632 (Bâtiment MA)
Station 8
1015 Lausanne

EPFLVPAVPA-AVP-EAVP-EAVP-E-EULER

RESEARCH INTERESTS

Numerical Analysis and scientific computing. Numerical optimization and variational problems. Computational fluid dynamics and free surface flows. Air quality modeling and computational chemistry.

Publications sur infoscience

A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks

A. CaboussatM. GirardinM. Picasso

Math Optimization for Artificial Intelligence. Heuristic and Metaheuristic Methods for Robotics and Machine Learning; De Gruyter Brill (Germany), 2025.

Error Assessment for Finite Elements/Neural Networks Methods Applied to Parametric PDEs

M. Girardin

Lausanne, EPFL, 2025. DOI : 10.5075/epfl-thesis-11474.

Numerical Analysis of a Simplified Unified Model for Viscoelastic Fluids and Elastic Solids

A. CaboussatL. A. DiserensM. Picasso

2025. European Conference on Numerical Mathematics and Advanced Applications, Lisbon, Portugal, 2023-09-04 - 2023-09-08. p. 220 - 228. DOI : 10.1007/978-3-031-86173-4_22.

A cut-cell method for the numerical simulation of 3D multiphase flows with strong interfacial effects

A. CaboussatJ. HessA. MassereyM. Picasso

Journal Of Computational Physics. 2024. DOI : 10.1016/j.jcp.2024.112846.

Error assessment of an adaptive finite elements-neural networks method for an elliptic parametric PDE

A. CaboussatM. GirardinM. Picasso

Computer Methods In Applied Mechanics And Engineering. 2024. DOI : 10.1016/j.cma.2024.116784.

Adaptive Finite Elements with Large Aspect Ratio. Application to Aluminium Electrolysis

P. Passelli

Lausanne, EPFL, 2024. DOI : 10.5075/epfl-thesis-10482.

An Adaptive Least-squares Algorithm for the Elliptic Monge-ampere Equation

A. CaboussatD. GourzoulidisA. Picasso

COMPTES RENDUS MECANIQUE. 2023. DOI : 10.5802/crmeca.222.

NUMERICAL APPROXIMATION OF RIGID MAPS IN ORIGAMI THEORY

A. CaboussatD. Gourzoulidis

Communications in Optimization Theory. 2023. DOI : 10.23952/cot.2023.8.

Numerical simulation of immiscible incompressible viscous, viscoelastic and elastic multiphase flows

L. A. Diserens

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-10027.

A Least-Squares Method for the Solution of the Non-smooth Prescribed Jacobian Equation

A. CaboussatR. GlowinskiD. Gourzoulidis

Journal Of Scientific Computing. 2022. DOI : 10.1007/s10915-022-01968-8.

A splitting method for the numerical simulation of free surface flows with sediment deposition and resuspension

A. MradA. CaboussatM. Picasso

International Journal For Numerical Methods In Fluids. 2022. DOI : 10.1002/fld.5122.

An anisotropic adaptive method for the numerical approximation of orthogonal maps

A. CaboussatD. GourzoulidisM. Picasso

Journal Of Computational And Applied Mathematics. 2022. DOI : 10.1016/j.cam.2021.113997.

Numerical simulation of sediment dynamics with free surface flows

A. Mrad

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-8195.

Numerical Methods for First and Second Order Fully Nonlinear Partial Differential Equations

D. Gourzoulidis

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-8521.

Numerical Approximation Of Orthogonal Maps

A. CaboussatR. GlowinskiD. GourzoulidisM. Picasso

Siam Journal On Scientific Computing. 2019. DOI : 10.1137/19M1243683.

A Numerical Model For The Simulation Of Shallow Laser Surface Melting

A. CaboussatJ. HessA. MassereyM. Picasso

2019. 2nd International Conference on Simulation for Additive Manufacturing (Sim-AM), Pavia, ITALY, Sep 11-13, 2019. p. 286 - 296.

A Least-Squares/Relaxation Method for the Numerical Solution of the Three-Dimensional Elliptic Monge-Ampere Equation

A. CaboussatR. GlowinskiD. Gourzoulidis

Journal Of Scientific Computing. 2018. DOI : 10.1007/s10915-018-0698-6.

A semi-Lagrangian splitting method for the numerical simulation of sediment transport with free surface flows

S. BoyavalA. CaboussatA. MradM. PicassoG. Steiner

Computers & Fluids. 2018. DOI : 10.1016/j.compfluid.2018.04.002.

A posteriori error estimation for partial differential equations with random input data

D. S. Guignard

Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-7260.

An octree-based adaptive semi-Lagrangian free surface flow solver

V. H. Laurmaa

Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-7011.