David Richard Harvey
david.harvey@epfl.ch +41 21 693 37 87 https://www.epfl.ch/research/domains/astrophysics/home/research-groups/david-harvey/
EPFL SB IPHYS LASTRO
Observatoire de Sauverny
1290 Versoix
+41 21 693 37 87
Office: BSP 314
EPFL › SB › IPHYS › LASTRO
Site web: https://lastro.epfl.ch/
EPFL SB IPHYS LASTRO
SAUV 344 (Sauverny)
Ch. Pegasi 51
1290 Versoix
+41 21 693 37 87
Office: SAUV 344
EPFL › VPA › VPA-AVP-DLE › AVP-DLE-EDOC › EDPY-ENS
Publications représentatives
On the cross-section of dark matter using substructure infall into galaxy clusters
Harvey, David; Tittley, Eric; Massey, Richard; Kitching, Thomas D.; Taylor, Andy; Pike, Simon R.; Kay, Scott T.; Lau, Erwin T.; Nagai, Daisuke
Published in MNRAS, Volume 441, Issue 1, p.404-416 in
Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation)
Massey, Richard; Hoekstra, Henk; Kitching, Thomas; Rhodes, Jason; Cropper, Mark; Amiaux, Jérôme; Harvey, David; Mellier, Yannick; Meneghetti, Massimo; Miller, Lance; Paulin-Henriksson, Stéphane; Pires, Sandrine; Scaramella, Roberto; Schrabback, Tim
Published in MNRAS, Volume 429, Issue 1, p.661-678 in
Dark matter astrometry: accuracy of subhalo positions for the measurement of self-interaction cross-sections
Harvey, David; Massey, Richard; Kitching, Thomas; Taylor, Andy; Jullo, Eric; Kneib, Jean-Paul; Tittley, Eric; Marshall, Philip J.
Published in MNRAS, Volume 433, Issue 2, p.1517-1528 in
Observing Dark Worlds: A crowdsourcing experiment for dark matter mapping
Harvey, D.; Kitching, T. D.; Noah-Vanhoucke, J.; Hamner, B.; Salimans, T.; Pires, A. M.
Published in Astronomy and Computing, Volume 5, p. 35-44. in
The Galaxy Activity, Torus, and Outflow Survey (GATOS) VI. Black hole mass estimation using machine learning
ASTRONOMY & ASTROPHYSICS. 2025. DOI : 10.1051/0004-6361/202347566.Search for a massless dark photon in c → uγ' decays
PHYSICAL REVIEW D. 2025. DOI : 10.1103/PhysRevD.111.L011103.Sleptonic SUSY: from UV framework to IR phenomenology
Journal of High Energy Physics. 2022. DOI : 10.1007/JHEP09(2022)142.Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at $\sqrt{s}=13\,\text {Te}\text {V} $
The European Physical Journal C. 2019. DOI : 10.1140/epjc/s10052-019-6730-7.Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton–proton collisions at $\sqrt{s} $ = 13 $\,\text {TeV}$
The European Physical Journal C. 2018. DOI : 10.1140/epjc/s10052-018-5740-1.Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at $ \sqrt{s}=13 $ TeV
Journal of High Energy Physics. 2017. DOI : 10.1007/JHEP03(2017)061.Looking for dark matter trails in colliding galaxy clusters
Monthly Notices Of The Royal Astronomical Society. 2017. DOI : 10.1093/mnras/stw2671.The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827
Monthly Notices Of The Royal Astronomical Society. 2015. DOI : 10.1093/mnras/stv467.The nongravitational interactions of dark matter in colliding galaxy clusters
Science. 2015. DOI : 10.1126/science.1261381.Weyssenhoff fluid dynamics in general relativity using a 1 + 3 covariant approach
Classical and Quantum Gravity. 2007. DOI : 10.1088/0264-9381/24/24/011.The fate of the zero mode of the five-dimensional kink in the presence of gravity
JHEP. 2005. DOI : 10.1088/1126-6708/2005/09/062.Primordial constraint on the spatial dependence of the Newton constant
2004Cosmic microwave background constraints on the strong equivalence principle
Physical Review D [1970-2015]. 2004. DOI : 10.1103/PhysRevD.70.103528.The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827
Monthly Notices Of The Royal Astronomical Society. 2015. DOI : 10.1093/mnras/stv467.Systematic or signal? How dark matter misalignments can bias strong lensing models of galaxy clusters
Monthly Notices Of The Royal Astronomical Society. 2016. DOI : 10.1093/mnras/stw295.Hubble Frontier Fields: the geometry and dynamics of the massive galaxy cluster merger MACSJ0416.1-2403
Monthly Notices Of The Royal Astronomical Society. 2015. DOI : 10.1093/mnras/stu2425.A weak lensing comparability study of galaxy mergers that host AGNs
Monthly Notices Of The Royal Astronomical Society. 2015. DOI : 10.1093/mnrasl/slv073.Enseignement et PhD
Doctorant·es actuel·les
Ethan Daniel Tregidga, Felix Francisco Vecchi
Cours
Lecture series on scientific machine learning
PHYS-754
Ce cours présente des travaux sur la façon dont les questions scientifiques peuvent être abordées à l'aide de l'apprentissage automatique. L'apprentissage automatique permet d'extraire des connaissances à partir de données de manière automatisée. Nous apprendrons à partir d'exemples concrets.