Dirk Grundler
EPFL STI IMX LMGN
BM 3142 (Bâtiment BM)
Station 17
1015 Lausanne
+41 21 693 38 52
Office: BM 3141
EPFL › STI › IMX › LMGN
Website: https://lmgn.epfl.ch/
+41 21 693 38 52
EPFL › STI › STI-SMX › SMX-ENS
+41 21 693 38 52
EPFL › STI › IEM › IEM-GE
+41 21 693 38 52
EPFL › VPA › VPA-AVP-DLE › AVP-DLE-EDOC › EDMX-GE
Website: https://go.epfl.ch/phd-edmx
Expertise
- Magnonics
- Spintronics
- Superconducting quantum systems
- Nanotechnology for integrated magnonics, spintronics and free-form magnetic nanostructures
- Microwave spectroscopy using broadband microwave electronics and inelastic light scattering
- Numerical simulation in micromagnetism and time-dependent Ginzburg Landau formalism
- Cryogenic Brillouin light scattering microscopy and magnetotransport
Mission
By our experiments and simulations, we aim at obtaining a microscopic understanding about how to master collective spin excitations and spin-polarized (supre)currents at the nanoscale. The focus is devoted to microwave properties covering the frequency regime from about 1 GHz to 1 THz. In this regime, electromagnetic waves that, in free space, exhibit wavelengths from mm to cm can be coupled to the microscopic magnetic moments, thereby inducing spin-precessional motion (spin waves). The wave-like excitation can obey a wavelength of a few 10 nanometers and smaller. Miniaturized microwave components are hence possible. By our projects we contribute to the research fields magnonics and super-spintronics where one aims at data processing and transmission using spin waves and spin-polarized supercurrents in nanoengineered magnetic circuits. The main challenges in the research field are as follows:
- rmagnetic materials offering the lowest possible signal losses
- development of a nanotechnolgy for 3D device architectures exploiting ferromagnetic metals and superconductors
- microwave-to-spin wave transducers for wavelengths below 100 nm
- interfacing with existing nanoelectronics
- reprogrammable magnetic metamaterials
Current Work
Magnonic Crystals, Grating Couplers & Hardware-implemented Neural Networks
Nanotubes & Artificial Chiral Magnets
Selected publications
Full list of Publications
Profile on Google Scholar
Published in (with citations) in
Approaching soft X-ray wavelengths in nanomagnet-based microwave technology
H. Yu, D. O. d’ Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, F. Heimbach, D. Grundler
Published in Nature Communications 7, Article number: 11255 (2016) in
Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets
T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, C. Pfleiderer, and D. Grundler
Published in Nature Materials 14, 478 (2015) in
Review and prospects of magnonic crystals and devices with reprogrammable band structure (TOPICAL REVIEW, open access)
M. Krwaczyk and D. Grundler
Published in J. Phys.: Cond. Matter 26, 123202 (2014) in
Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry
A. Buchter, J. Nagel, D. Rüffer, F. Xue, D. P. Weber, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, M. Kemmler, R. Kleiner, D. Koelle, D. Grundler, and M. Poggio
Published in Phys. Rev. Lett. 111, 067202 (2013) in
Space- and time-resolved Seebeck and Nernst voltages in laser-heated permalloy/gold microstructures
A. van Bieren, F. Brandl, D. Grundler, and J.-P. Ansermet
Published in Appl. Phys. Lett. 102, 052408 (2013). in
Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID
J. Nagel, A. Buchter, F. Xue, O. F. Kieler, T. Weimann, J. Kohlmann,
A.B. Zorin, D. Rüffer, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, D. Grundler, R. Kleiner, D. Koelle, M. Poggio, and M. Kemmler
Published in Phys. Rev. B 88, 064425 (2013) in
Cantilever Magnetometry of Individual Ni Nanotubes
D.P. Weber, D. Rüffer, A. Buchter, F. Xue, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, D. Grundler, and M. Poggio
Published in Nano Lett. 12, 6139 (2012) in
Magnetic states of an individual Ni nanotube probed by anisotropic magnetoresistance
D. Rueffer, R. Huber, P. Berberich, S. Albert, E. Russo-Averchi, M. Heiss, J. Arbiol, A. Fontcuberta i Morral, and D. Grundler
Published in Nanoscale 4, 4989 (2012) in
Forbidden band gaps in the spin-wave spectrum of a two-dimensional bicomponent magnonic crystal
S. Tacchi, G. Duerr, J.W. Klos, M. Madami, S. Neusser , G. Gubbiotti, G. Carlotti, M. Krawczyk, and D. Grundler
Published in Phys. Rev. Lett. 109, 137202 (2012) in
Enhanced transmission through squeezed modes in a self-cladding magnonic waveguide
G. Duerr, K. Thurner, J. Topp, R. Huber, and D. Grundler
Published in Phys. Rev. Lett. 108, 227202 (2012) in
Spatial control of spin-wave modes in Ni80Fe20 antidot lattices by embedded Co nanodisks
G. Duerr, M. Madami, S. Neusser, S. Tacchi, G. Gubbiotti, G. Carlotti, and D. Grundler
Published in Appl. Phys. Lett. 99, 202502 (2011) in
Magnonics
V.V. Kruglyak, S.O. Demokritov, and D. Grundler
Published in J. Phys. D: Appl. Phys. 43, 264001 (2010) in
Making A Reconfigurable Artificial Crystal by Ordering Bistable Magnetic Nanowires
J. Topp, D. Heitmann, M. Kostylev, and D. Grundler
Published in Phys. Rev. Lett. 104, 207205 (2010) in
Magnonics: Spin Waves on the Nanoscale
S. Neusser and D. Grundler
Published in Advanced Materials 21, 2927 (2009) in
Spin-wave interference in microscopic rings
J. Podbielski, F. Giesen, and D. Grundler
Published in Phys. Rev. Lett. 96, 167207 (2006) in
Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers
D. Grundler
Published in Phys. Rev. Lett. 84, 6074 (2000) in
Publications D Grundler
2025
* Coherent Spin Waves in Curved Ferromagnetic Nanocaps of a 3D‐Printed Magnonic Crystal
Small. 2025. DOI : 10.1002/smll.202508983.* Geometry-induced spin chirality in a non-chiral ferromagnet at zero field
Nature Nanotechnology. 2025. DOI : 10.1038/s41565-025-02055-3.* Exploiting Two‐Photon Lithography, Deposition, and Processing to Realize Complex 3D Magnetic Nanostructures
Advanced Functional Materials. 2025. p. 1 - 30. DOI : 10.1002/adfm.202516383.* Nonreciprocal Spin Waves in Nanoscale Hybrid Néel–Bloch–Néel Domain Walls Detected by Scanning X‐Ray Microscopy in Perpendicular Magnetic Anisotropic Fe/Gd Multilayers
Advanced Materials. 2025. DOI : 10.1002/adma.202508181.* Electrical detection of interfacial exchange field at the (ferromagnetic insulator) | (normal metal) interface using spin-dependent scattering
Journal of Physics D: Applied Physics. 2025. Vol. 58, num. 28, p. 285003. DOI : 10.1088/1361-6463/ade691.* Short-wave magnons with multipole spin precession detected in the topological bands of a skyrmion lattice
Communications Materials. 2025. Vol. 6, num. 1. DOI : 10.1038/s43246-025-00858-4.* Helical spin dynamics in Cu2OSeO3 as measured with small-angle neutron scattering
Structural dynamics (Melville, N.Y.). 2025. Vol. 12, num. 4. DOI : 10.1063/4.0000305.* Deterministic switching of antiferromagnetic spin textures by nonlinear magnons
Nature Communications. 2025. num. 16, p. 5794. DOI : 10.1038/s41467-025-60883-2.* Periodic Phase Slips and Frequency Comb Generation at Tunable Microwave Frequencies in Superconducting Diabolo Structures
ACS Nanoscience Au. 2025. DOI : 10.1021/acsnanoscienceau.5c00056.* Control of spin currents by magnon interference in a canted antiferromagnet
Nature Physics. 2025. Vol. 21, p. 740 - 745. DOI : 10.1038/s41567-025-02819-7.* Perspective on nonvolatile magnon-signal storage and in-memory computation for low-power consuming magnonics
Applied Physics Letters. 2025. Vol. 126, num. 16. DOI : 10.1063/5.0260884.* 2025 roadmap on 3D nanomagnetism
JOURNAL OF PHYSICS-CONDENSED MATTER. 2025. Vol. 37, num. 14. DOI : 10.1088/1361-648X/ad9655.* On-chip Germanium nanowires for hole spin qubits
Lausanne, EPFL, 2025. DOI : 10.5075/epfl-thesis-10922.* Functional Soft Fibers and Textiles: Multi-Material Approaches for Actuation and Sensing
Lausanne, EPFL, 2025. DOI : 10.5075/epfl-thesis-11056.* Mechanisms of irradiation creep in nickel: a multi-technique experimental study
Lausanne, EPFL, 2025. DOI : 10.5075/epfl-thesis-11213.* Mathematical Analysis and Optimization of Features for Atomistic Machine Learning
Lausanne, EPFL, 2025. DOI : 10.5075/epfl-thesis-11219.* Advancing understanding and practical performance of machine learning interatomic potentials
Lausanne, EPFL, 2025. DOI : 10.5075/epfl-thesis-10703.* Magnon assisted magnetization reversal in NiFe-YIG hybrid nanostructures
Lausanne, EPFL, 2025. DOI : 10.5075/epfl-thesis-11302.* Additive Manufacturing and Exploration of Three-Dimensional Ferromagnetic Nanonetworks for 3D Magnonics and 3D Spintronics
Lausanne, EPFL, 2025. DOI : 10.5075/epfl-thesis-11329.2024
* Emergent coherent modes in nonlinear magnonic waveguides detected at ultrahigh frequency resolution
Nature Communications. 2024. num. 15(2024), p. 7302. DOI : 10.1038/s41467-024-51483-7.Research
Current Research Fields
Teaching & PhD
PhD Students
Anna Duvakina, Oujin Huang, Ferdinand Rémy Hynek Posva, Maria Chani Mihaescu, Axel Johan Marie Deenen
Past EPFL PhD Students
Ping Che, Maria Carmen Giordano, Korbinian Baumgärtl, Sho Watanabe, Anna Kúkol'ová, Le Yu, Andrea Mucchietto, Mohammad Hamdi, Shreyas Sanjay Joglekar, Huixin Guo
Courses
General physics: electromagnetism
PHYS-201(d)
The topics covered by the course are concepts of electromagnetism, properties of waves, and fluid mechanics.
Introduction to magnetic materials in modern technologies
MSE-432
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric article surveillance, spintronics, sensing, and data storage.