Dirk Grundler

photo placeholder image

Associate Professor

dirk.grundler@epfl.ch +41 21 693 38 52 http://lmgn.epfl.ch

EPFL STI IMX LMGN
BM 3142 (Bâtiment BM)
Station 17
CH-1015 Lausanne

EPFL STI IMT-GE
BM 3141 (Bâtiment BM)
Station 17
CH-1015 Lausanne

EPFL E EDMX-GE
MXF 110 (Bâtiment MXF)
Station 12
CH-1015 Lausanne

Unit: EDMX-ENS

Unit: CDOCT

perm_contact_calendarvCard
Administrative data

Publications

SELECTED PUBLICATIONS

Profile on Google Scholar
(with citations)
Full list of Publications
H. Yu, D. O. d’ Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, F. Heimbach, D. Grundler
Nature Communications 7, Article number: 11255 (2016)
Approaching soft X-ray wavelengths in nanomagnet-based microwave technology
T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, C. Pfleiderer, and D. Grundler
Nature Materials 14, 478 (2015)
Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets
M. Krwaczyk and D. Grundler
J. Phys.: Cond. Matter 26, 123202 (2014)
Review and prospects of magnonic crystals and devices with reprogrammable band structure (TOPICAL REVIEW, open access)
A. Buchter, J. Nagel, D. R�ffer, F. Xue, D. P. Weber, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, M. Kemmler, R. Kleiner, D. Koelle, D. Grundler, and M. Poggio
Phys. Rev. Lett. 111, 067202 (2013)
Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry
A. van Bieren, F. Brandl, D. Grundler, and J.-P. Ansermet
Appl. Phys. Lett. 102, 052408 (2013).
Space- and time-resolved Seebeck and Nernst voltages in laser-heated permalloy/gold microstructures
J. Nagel, A. Buchter, F. Xue, O. F. Kieler, T. Weimann, J. Kohlmann, A.B. Zorin, D. R�ffer, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, D. Grundler, R. Kleiner, D. Koelle, M. Poggio, and M. Kemmler
Phys. Rev. B 88, 064425 (2013)
Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID
D.P. Weber, D. R�ffer, A. Buchter, F. Xue, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, D. Grundler, and M. Poggio
Nano Lett. 12, 6139 (2012)
Cantilever Magnetometry of Individual Ni Nanotubes
D. Rueffer, R. Huber, P. Berberich, S. Albert, E. Russo-Averchi, M. Heiss, J. Arbiol, A. Fontcuberta i Morral, and D. Grundler
Nanoscale 4, 4989 (2012)
Magnetic states of an individual Ni nanotube probed by anisotropic magnetoresistance
S. Tacchi, G. Duerr, J.W. Klos, M. Madami, S. Neusser , G. Gubbiotti, G. Carlotti, M. Krawczyk, and D. Grundler
Phys. Rev. Lett. 109, 137202 (2012)
Forbidden band gaps in the spin-wave spectrum of a two-dimensional bicomponent magnonic crystal
G. Duerr, K. Thurner, J. Topp, R. Huber, and D. Grundler
Phys. Rev. Lett. 108, 227202 (2012)
Enhanced transmission through squeezed modes in a self-cladding magnonic waveguide
G. Duerr, M. Madami, S. Neusser, S. Tacchi, G. Gubbiotti, G. Carlotti, and D. Grundler
Appl. Phys. Lett. 99, 202502 (2011)
Spatial control of spin-wave modes in Ni80Fe20 antidot lattices by embedded Co nanodisks
V.V. Kruglyak, S.O. Demokritov, and D. Grundler
J. Phys. D: Appl. Phys. 43, 264001 (2010)
Magnonics
J. Topp, D. Heitmann, M. Kostylev, and D. Grundler
Phys. Rev. Lett. 104, 207205 (2010)
Making A Reconfigurable Artificial Crystal by Ordering Bistable Magnetic Nanowires
S. Neusser and D. Grundler
Advanced Materials 21, 2927 (2009)
Magnonics: Spin Waves on the Nanoscale
J. Podbielski, F. Giesen, and D. Grundler
Phys. Rev. Lett. 96, 167207 (2006)
Spin-wave interference in microscopic rings
D. Grundler
Phys. Rev. Lett. 84, 6074 (2000)
Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers