Farhad Rachidi-Haeri

Professeur titulaire
EPFL SCI STI FR
ELL 138 (Bâtiment ELL)
Station 11
CH-1015 Lausanne
+41 21 693 26 20
+41 21 693 26 61
Local:
ELL 138
EPFL
>
STI
>
IEM
>
SCI-STI-FR
Web site: Site web: https://emc.epfl.ch/
Domaines de compétences
Mission
Farhad Rachidi is the Head of the EMC Group of the Swiss Federal Institute of Technology (EPFL). The Group is active in EMC research since early 1980s. Our Research is essentially sponsored by various programs of Swiss National Science Foundation, European Community, European Space Agency, Swiss Electrical Utilities (PSEL, CREE-RDP), as well as by private companies. We collaborate with many international research centers and universities among which Universities of Bologna and Rome (Italy), Uppsala University and KTH (Sweden), University of Toronto (Canada), University of Florida (USA), Radio Research and Development Institute (Russia), etc. Students at Swiss Federal Institute of Technology have an opportunity to get involved in EMC research through semester projects (undergraduate level), diploma projects (equivalent to MS), and Ph.D. programme.Biographie
Farhad Rachidi (IEEE Fellow, EMP Fellow, Electromagnetics Academy Fellow) was born in Geneva in 1962. He received the M.S. degree in electrical engineering and the Ph.D. degree from the Swiss Federal Institute of Technology, Lausanne, in 1986 and 1991 respectively. He worked at the Power Systems Laboratory of the same institute until 1996 and had several short stays at the University of Florida and the NASA Kennedy Space Center. In 1997, he joined the Lightning Research Laboratory of the University of Toronto in Canada and from April 1998 until September 1999, he was with Montena EMC in Switzerland. He is currently a titular professor and the head of the EMC Laboratory at the Swiss Federal Institute of Technology, Lausanne, Switzerland. His research interests concern electromagnetic compatibility, lightning electromagnetics and electromagnetic field interactions with transmission lines. Dr. Rachidi is currently a member of the Advisory Board of the IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY and the President of the Swiss National Committee of the International Union of Radio Science. He has received numerous awards including the 2005 IEEE EMC Technical Achievement Award, the 2005 CIGRE Technical Committee Award, the 2006 Blondel Medal from the French Association of Electrical Engineering, Electronics, Information Technology and Communication (SEE), the 2016 Berger Award from the International Conference on Lightning Protection, the 2016 Best Paper Award of the IEEE Transactions on EMC, and the 2017 Motohisa Kanda Award for the most cited paper of the IEEE Transactions on EMC (2012-2016). In 2014, he was conferred the title of Honorary Professor of the Xi’an Jiaotong University in China. He served as the Vice-Chair of the European COST Action on the Physics of Lightning Flash and its Effects from 2005 to 2009, the Chairman of the 2008 European Electromagnetics International Symposium, the President of the International Conference on Lightning Protection from 2008 to 2014, the Editor-in-Chief of the Open Atmospheric Science Journal (2010-2012) and the Editor-in-Chief of the IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY from 2013 to 2015. He is a Fellow of the IEEE and of the SUMMA Foundation, and a member of the Swiss Academy of Sciences. He is the author or coauthor of over 200 scientific papers published in peer-reviewed journals and over 400 papers presented at international conferences.Publications
Liste des publicationsLink to Group page
EMC LaboratoryPublications
Publications Infoscience
Infoscience
Exact Expressions for Lightning Electromagnetic Fields: Application to the Rusck Field-To-Transmission Line Coupling Model
Atmosphere. 2023-02-09. DOI : 10.3390/atmos14020350.Computation of the attenuation function of the lightning return-stroke current from electromagnetic fields measured in a short-duration time-window — Part II: Numerical implementation
Electric Power Systems Research. 2023. DOI : 10.1016/j.epsr.2023.109410.Computation of the attenuation function of the lightning return-stroke current from electromagnetic fields measured in a short-duration time-window, Part I: Theoretical investigation
Electric Power Systems Research. 2023. DOI : 10.1016/j.epsr.2023.109392.Laser-guided lightning
Nature Photonics. 2023. DOI : 10.1038/s41566-022-01139-z.Current propagation type self-consistent leader-return stroke model
Electric Power Systems Research. 2023. DOI : 10.1016/j.epsr.2022.109102.A review of time reversal-based methods applied to fault location in power networks
Frontiers in Energy Research. 2023. DOI : 10.3389/fenrg.2022.1060938.A review of the modeling approaches of the lightning M-component with special attention to their current and electric field characteristics
Electric Power Systems Research. 2023. DOI : 10.1016/j.epsr.2022.108977.Influence of a lossy ground on the lightning performance of overhead transmission lines
Electric Power Systems Research. 2023. DOI : 10.1016/j.epsr.2022.108951.The Geometry and Charge of the Streamer Bursts Generated by Lightning Rods under the Influence of High Electric Fields
Atmosphere. 2022. DOI : 10.3390/atmos13122028.EMC Impact of Disturbances Generated by Multiple Sources
Electronics. 2022. DOI : 10.3390/electronics11213530.Partial discharge localization using time reversal: Application to gas insulated switchgear
Electric Power Systems Research. 2022. DOI : 10.1016/j.epsr.2022.108655.A Prony-based approach for accelerating the lightning electromagnetic fields computation above a perfectly conducting ground
Electric Power Systems Research. 2022. DOI : 10.1016/j.epsr.2022.108125.On the reconstruction of the attenuation function of a return-stroke current from the Fourier Transform of finite-duration measurements
International Journal of Electrical Power & Energy Systems. 2022. DOI : 10.1016/j.ijepes.2022.108186.Assessment of the Lightning Performance of overhead distribution lines based on Lightning Location Systems data
International Journal of Electrical Power & Energy Systems. 2022. DOI : 10.1016/j.ijepes.2022.108230.A Prony-Based Approach for Accelerating the Lightning Electromagnetic Fields Computation: Effect of the Soil Finite Conductivity
Electric Power Systems Research. 2022. DOI : 10.1016/j.epsr.2022.108013.Säntis lightning research facility: a summary of the first ten years and future outlook
e & i Elektrotechnik und Informationstechnik. 2022. DOI : 10.1007/s00502-022-01031-2.Comment on “Straight lightning as a signature of macroscopic dark matter”
Physical Review. 2022. DOI : 10.1103/PhysRevD.105.088301.A Self-Consistent Return Stroke Model That Includes the Effect of the Ground Conductivity at the Strike Point
Atmosphere. 2022. DOI : 10.3390/atmos13040593.Secondary Fast Breakdown in Narrow Bipolar Events
Geophysical Research Letters. 2022. DOI : 10.1029/2021GL097452.On the Use of Benford’s Law to Assess the Quality of the Data Provided by Lightning Locating Systems
Atmosphere. 2022. DOI : 10.3390/atmos13040552.Estimation of Charge Transfer During Long Continuing Currents in Natural Downward Flashes Using Single‐Station E‐Field Measurements
Journal of Geophysical Research: Atmospheres. 2022. DOI : 10.1029/2021JD036197.An Inverse-Filter-Based Method to Locate Partial Discharge Sources in Power Transformers
Energies. 2022. DOI : 10.3390/en15061988.A Compressive Sensing Framework for EMI Source Localization Using a Metalens Structure: Localization Beyond the Diffraction Limit
IEEE Transactions on Electromagnetic Compatibility. 2022. DOI : 10.1109/TEMC.2020.3041803.Partial discharge localization in power transformers using acoustic time reversal
Electric Power Systems Research. 2022. DOI : 10.1016/j.epsr.2022.107801.Modified Transmission Line Model with a Current Attenuation Function Derived from the Lightning Radiation Field—MTLD Model
Atmosphere. 2021-02-13. DOI : 10.3390/atmos12020249.Estimation of the Lightning Performance of Overhead Lines Accounting for Different Types of Strokes and Multiple Strike Points
IEEE Transactions on Electromagnetic Compatibility. 2021. DOI : 10.1109/TEMC.2021.3060139.Polarity Asymmetry in Lightning Return Stroke Speed Caused by the Momentum Associated with Radiation
Atmosphere. 2021. DOI : 10.3390/atmos12121642.Single-Sensor EMI Source Localization Using Time Reversal: An Experimental Validation
Electronics. 2021. DOI : 10.3390/electronics10192448.On the Apparent Non-Uniqueness of the Electromagnetic Field Components of Return Strokes Revisited
Atmosphere. 2021. DOI : 10.3390/atmos12101319.Evaluation of Site Errors in LLS Magnetic Direction Finding Caused by Large Hills Using the 3D‐FDTD Technique
Journal of Geophysical Research: Earth and Space Science. 2021. DOI : 10.1029/2021EA001914.An Extension of the Guided Wave M‐Component Model Taking Into Account the Presence of a Tall Strike Object
Journal of Geophysical Research: Atmospheres. 2021. DOI : 10.1029/2021JD035121.Could Macroscopic Dark Matter (Macros) Give Rise to Mini-Lightning Flashes out of a Blue Sky without Clouds?
Atmosphere. 2021. DOI : 10.3390/atmos12091230.Bidirectional Recoil Leaders in Upward Lightning Flashes Observed at the Säntis Tower
Journal of Geophysical Research: Atmospheres. 2021. DOI : 10.1029/2021JD035238.A Correlation-Based Electromagnetic Time Reversal Technique to Locate Indoor Transient Radiation Sources
IEEE Transactions on Microwave Theory and Techniques. 2021. DOI : 10.1109/TMTT.2021.3086826.Ionization Waves Enhance the Production of X-rays during Streamer Collisions
Atmosphere. 2021. DOI : 10.3390/atmos12091101.Three-Dimensional FDTD-Based Simulation of Induced Surges in Secondary Circuits Owing to Primary-Circuit Surges in Substations
IEEE Transactions on Electromagnetic Compatibility. 2021. DOI : 10.1109/TEMC.2021.3049144.An Efficient Methodology for the Evaluation of the Lightning Performance of Overhead Lines
IEEE Transactions on Electromagnetic Compatibility. 2021. DOI : 10.1109/TEMC.2021.3054427.Field-to-Transmission Line Coupling Models With Special Attention to the Cooray–Rubinstein Approximation
IEEE Transactions on Electromagnetic Compatibility. 2021. DOI : 10.1109/TEMC.2020.3003534.Analytical Expressions for Lightning Electromagnetic Fields With Arbitrary Channel-Base Current. Part II: Validation and Computational Performance
IEEE Transactions on Electromagnetic Compatibility. 2021. DOI : 10.1109/TEMC.2020.3018108.Analytical Expressions for Lightning Electromagnetic Fields With Arbitrary Channel-Base Current—Part I: Theory
IEEE Transactions on Electromagnetic Compatibility. 2021. DOI : 10.1109/TEMC.2020.3018199.A New Channel-Base Lightning Current Formula With Analytically Adjustable Parameters
IEEE Transactions on Electromagnetic Compatibility. 2021. DOI : 10.1109/TEMC.2020.3009273.On the Initiation of Upward Negative Lightning by Nearby Lightning Activity: An Analytical Approach
Journal of Geophysical Research: Atmospheres. 2021. DOI : 10.1029/2020JD034043.A Closed Time-Reversal Cavity for Electromagnetic Waves in Transmission Line Networks
IEEE Transactions on Antennas and Propagation. 2021. DOI : 10.1109/TAP.2020.3019348.Electromagnetic Time Reversal Method to Locate Partial Discharges in Power Networks Using 1D TLM Modelling
IEEE Letters on Electromagnetic Compatibility Practice and Applications. 2021. DOI : 10.1109/LEMCPA.2020.3032465.Impact of Frequency-Dependent Soil Models on Grounding System Performance for Direct and Indirect Lightning Strikes
IEEE Transactions on Electromagnetic Compatibility. 2021. DOI : 10.1109/TEMC.2020.2986646.An Effective EMTR-Based High-Impedance Fault Location Method for Transmission Lines
IEEE Transactions on Electromagnetic Compatibility. 2021. DOI : 10.1109/TEMC.2020.2991862.Revisiting the Calculation of the Early Time HEMP Conducted Environment
IEEE Transactions on Electromagnetic Compatibility. 2021. DOI : 10.1109/TEMC.2020.3008829.The laser lightning rod project
The European Physical Journal Applied Physics. 2021. DOI : 10.1051/epjap/2020200243.An experimental validation of partial discharge localization using electromagnetic time reversal
Scientific Reports. 2021. DOI : 10.1038/s41598-020-80660-z.Localization of Electromagnetic Interference Sources Using a Time-Reversal Cavity
IEEE Transactions on Industrial Electronics. 2021. DOI : 10.1109/TIE.2019.2962460.Modeling Compact Intracloud Discharge (CID) as a Streamer Burst
Atmosphere. 2020-05-25. DOI : 10.3390/atmos11050549.LMA observations of upward lightning flashes at the Santis Tower initiated by nearby lightning activity
Electric Power Systems Research. 2020-04-01. DOI : 10.1016/j.epsr.2019.106067.Characteristics of different charge transfer modes in upward flashes inferred from simultaneously measured currents and fields
High Voltage. 2020-02-01. DOI : 10.1049/hve.2019.0017.Assessing the Efficacy of a GPU-Based MW-FDTD Method for Calculating Lightning Electromagnetic Fields Over Large-Scale Terrains
IEEE Letters on Electromagnetic Compatibility Practice and Applications. 2020. DOI : 10.1109/LEMCPA.2020.3020922.An Acoustic Time Reversal Technique to Locate a Partial Discharge Source: Two-Dimensional Numerical Validation
IEEE Transactions on Dielectrics and Electrical Insulation. 2020. DOI : 10.1109/TDEI.2020.008837.Impedance and Admittance Formulas for a Multistair Model of Transmission Towers
IEEE Transactions on Electromagnetic Compatibility. 2020. DOI : 10.1109/TEMC.2020.2976644.Machine Learning-Based Lightning Localization Algorithm Using Lightning-Induced Voltages on Transmission Lines
IEEE Transactions on Electromagnetic Compatibility. 2020. DOI : 10.1109/TEMC.2020.2978429.Measurement and Modeling of Both Distant and Close Electric Fields of an M‐Component in Rocket‐Triggered Lightning
Journal of Geophysical Research: Atmospheres. 2020. DOI : 10.1029/2019JD032300.Numerical and Experimental Validation of Electromagnetic Time Reversal for Geolocation of Lightning Strikes
IEEE Transactions on Electromagnetic Compatibility. 2020. DOI : 10.1109/TEMC.2019.2957531.On the Propagation of Lightning-Radiated Electromagnetic Fields Across a Mountain
IEEE Transactions on Electromagnetic Compatibility. 2020. DOI : 10.1109/TEMC.2019.2947095.Locating Transient Directional Sources in Free Space Based on the Electromagnetic Time Reversal Technique
IEEE Transactions on Electromagnetic Compatibility. 2020. DOI : 10.1109/TEMC.2020.2966872.Grounding Resistance of a Hemispheric Electrode Located on the Top of a Finite-Height, Cone-Shaped Mountain
IEEE Transactions on Electromagnetic Compatibility. 2020. DOI : 10.1109/TEMC.2020.2974579.The Polarity Reversal of Lightning‐Generated Sky Wave
Journal of Geophysical Research: Atmospheres. 2020. DOI : 10.1029/2020JD032448.Partial Discharge Localization Using Electromagnetic Time Reversal: A Performance Analysis
IEEE Access. 2020. DOI : 10.1109/ACCESS.2020.3015973.An Efficient FDTD Method to Calculate Lightning Electromagnetic Fields Over Irregular Terrain Adopting the Moving Computational Domain Technique
IEEE Transactions on Electromagnetic Compatibility. 2020. DOI : 10.1109/TEMC.2019.2917282.The Upper Bound of the Speed of Propagation of Waves along a Transmission Line
Progress In Electromagnetics Research M. 2020. DOI : 10.2528/PIERM20040304.Latitude and Topographical Dependence of Lightning Return Stroke Peak Current in Natural and Tower-Initiated Negative Ground Flashes
Atmosphere. 2020. DOI : 10.3390/atmos11060560.On the Efficiency of OpenACC-aided GPU-Based FDTD Approach: Application to Lightning Electromagnetic Fields
Applied Sciences. 2020. DOI : 10.3390/app10072359.Partial Discharge Localization Using Time Reversal: Application to Power Transformers
Sensors. 2020. DOI : 10.3390/s20051419.On the Stability of FDTD-Based Numerical Codes to Evaluate Lightning-Induced Overvoltages in Overhead Transmission Lines
IEEE Transactions on Electromagnetic Compatibility. 2020. DOI : 10.1109/TEMC.2018.2890043.Electromagnetic Time Reversal Similarity Characteristics and its Application to Locating Faults in Power Networks
IEEE Transactions on Power Delivery. 2020. DOI : 10.1109/TPWRD.2019.2952207.On the influence of the soil stratification and frequency-dependent parameters on lightning electromagnetic fields
Electric Power Systems Research. 2020. DOI : 10.1016/j.epsr.2019.106047.Time reversal applied to fault location in power networks: Pilot test results and analyses
Electrical Power and Energy Systems. 2020. DOI : 10.1016/j.ijepes.2019.105382.The Propagation Effects of Lightning Electromagnetic Fields Over Mountainous Terrain in the Earth-Ionosphere Waveguide
Journal of Geophysical Research-Atmospheres. 2019-12-26. DOI : 10.1029/2018JD030014.Meteorological Aspects of Self-Initiated Upward Lightning at the Santis Tower (Switzerland)
Journal Of Geophysical Research-Atmospheres. 2019-12-26. DOI : 10.1029/2019JD030834.A New Engineering Model of Lightning M Component That Reproduces Its Electric Field Waveforms at Both Close and Far Distances
Journal of Geophysical Research-Atmospheres. 2019-12-16. DOI : 10.1029/2019JD030796.Single-Sensor Source Localization Using Electromagnetic Time Reversal and Deep Transfer Learning: Application to Lightning
Scientific Reports. 2019-11-22. DOI : 10.1038/s41598-019-53934-4.Calculation of the Grounding Resistance of Structures Located on Elevated Terrain
IEEE Transactions on Electromagnetic Compatibility. 2019. DOI : 10.1109/TEMC.2018.2877214.Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques
npj Climate and Atmospheric Science. 2019. DOI : 10.1038/s41612-019-0098-0.Analysis of the lightning production of convective cells
Atmospheric Measurement Techniques. 2019. DOI : 10.5194/amt-12-5573-2019.On the representation of thin wires inside lossy dielectric materials for FDTD‐based LEMP simulations
IEEJ Transactions on Electrical and Electronic Engineering. 2019. DOI : 10.1002/tee.22932.Estimation of the expected annual number of flashovers in power distribution lines due to negative and positive lightning
Electric Power Systems Research. 2019. DOI : 10.1016/j.epsr.2019.105956.Electromagnetic Fields Associated With the M‐Component Mode of Charge Transfer
Journal of Geophysical Research: Atmospheres. 2019. DOI : 10.1029/2018JD029998.Generalized Electric Field Equations of a Time-Varying Current Distribution Based on the Electromagnetic Fields of Moving and Accelerating Charges
Atmosphere. 2019. DOI : 10.3390/atmos10070367.Importance of Taking Into Account the Soil Stratification in Reproducing the Late-Time Features of Distant Fields Radiated by Lightning
IEEE Transactions on Electromagnetic Compatibility. 2019. DOI : 10.1109/TEMC.2018.2840702.On the Modeling of Non-Vertical Risers in the Interaction of Electromagnetic Fields With Overhead Lines
IEEE Transactions on Electromagnetic Compatibility. 2019. DOI : 10.1109/TEMC.2019.2903335.A Study of a Large Bipolar Lightning Event Observed at the Säntis Tower
IEEE Transactions on Electromagnetic Compatibility. 2019. DOI : 10.1109/TEMC.2019.2913220.EM Fields Generated by a Scale Model Helical Antenna and Its Use in Validating a Code for Lightning-Induced Voltage Calculation
IEEE Transactions on Electromagnetic Compatibility. 2019. DOI : 10.1109/TEMC.2019.2911995.Calculation of High-Frequency Electromagnetic Field Coupling to Overhead Transmission Line Above a Lossy Ground and Terminated With a Nonlinear Load
IEEE Transactions on Antennas and Propagation. 2019. DOI : 10.1109/TAP.2019.2902743.Polarimetric radar characteristics of lightning initiation and propagating channels
Atmospheric Measurement Techniques. 2019. DOI : 10.5194/amt-12-2881-2019.Analysis of a bipolar upward lightning flash based on simultaneous records of currents and 380-km distant electric fields
Electric Power Systems Research. 2019. DOI : 10.1016/j.epsr.2019.04.023.Isolated vs. Interconnected Wind Turbine Grounding Systems: Effect on the Harmonic Grounding Impedance, Ground Potential Rise and Step Voltage
Electric Power Systems Research. 2019. DOI : 10.1016/j.epsr.2019.04.010.Tower and Path-Dependent Voltage Effects on the Measurement of Grounding Impedance for Lightning Studies
IEEE Transactions on Electromagnetic Compatibility. 2019. DOI : 10.1109/TEMC.2018.2819693.Nonlinear electrical conductivity through the thickness of multidirectional carbon fiber composites
Journal of Materials Science. 2019. DOI : 10.1007/s10853-018-3127-1.A Semi-Analytical Method to Evaluate Lightning-Induced Overvoltages on Overhead Lines Using the Matrix Pencil Method
IEEE Transactions on Power Delivery. 2018-11-22. DOI : 10.1109/TPWRD.2018.2842237.Remonter le temps jusqu’à la source
Bulletin.ch. 2018-05-01.A Full-Scale Experimental Validation of Electromagnetic Time Reversal Applied to Locate Disturbances in Overhead Power Distribution Lines
IEEE Transactions on Electromagnetic Compatibility. 2018-02-01. DOI : 10.1109/TEMC.2018.2793967.On the Differential Input Impedance of an Electro-Explosive Device
IEEE Transactions on Microwave Theory and Techniques. 2018-02-01. DOI : 10.1109/TMTT.2017.2772801.Lorentz Force from a Current-Carrying Wire on a Charge in Motion under the Assumption of Neutrality in the Symmetrical Frame of Reference
Journal of Modern Physics. 2018. DOI : 10.4236/jmp.2018.914159.An improved time marching simulation of distributed multiport networks loaded with nonlinear devices
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. 2018. DOI : 10.1002/jnm.2315.Nombre de notices chargées.
Enseignement & Phd
Enseignement
Génie électrique et électronique
Doctorants
Chaumont Thomas, Kohlmann Hannes, Le Boudec Elias Per Joachim, Mansouri Tehrani Seyedmohammadehsan, Martinez Hernandez David Ricardo,A dirigé les thèses EPFL de
Azadifar Mohammad , Lugrin Gaspard , Mora Parra Nicolas , Mosaddeghi Seyed Abbas , Mostajabi Amirhossein , Razzaghi Reza , Romero Romero Carlos Alberto , Smorgonskii Aleksandr , Sunjerga Antonio , Vega Stavro Jose Felix , Vukicevic Ana , Wang Zhaoyang ,Cours
Circuits et systèmes
Fundamentals of electrical circuits and systems II
Wave propagation along transmission lines
Electromagnetic compatibility
Advanced topics in electromagnetic compatibility
1. Introduction to EMC and modeling techniques
2. Representation of EMI signals
Other topics to be selected (non-exhaustive list):
1. Printed circuit board design
2. High frequency electromagnetic field coupling to transmission lines
3. Grounding techniques
4. Shielding
5. Modeling of a lightning discharge
6. Biologi