Giovanni Boero

Senior Scientist
giovanni.boero@epfl.ch +41 21 693 66 75
EPFL STI IMT LMIS1
BM 3110 (Bâtiment BM)
Station 17
CH-1015 Lausanne
Web site: Web site: https://lmis1.epfl.ch/
+41 21 693 66 75
Office: BM 3110
EPFL
>
VPA
>
VPA-AVP-PGE
>
AVP-PGE-EDOC
>
EDMI-ENS
+41 21 693 66 75
EPFL
>
P
>
P-SG
>
CCE
Web site: Web site: https://cce.epfl.ch/
Fields of expertise
Short CV
Workplaces:
1996-present: Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland.
1994-1996: Organization Europeenne pour la Recherche Nucleaire(CERN),Geneva,Switzerland.
1993-1995: Fermi National Accelerator Laboratory (FNAL), Batavia, IL, USA.
Education:
2000: PhD, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
1994: Laurea in Physics, Università di Genova, Genova, Italy
PhD Students Topics
Nergiz Sahin: Single-chip ESR detectors: limit of detection, applications, and exotic phenomena.
Reza Farsi: Ultra-low 1/f phase noise integrated oscillators.
Claudio Gonelli: RF controlled biodegradable implantable capsules (co-supervision with Juergen Brugger, EPFL).
Roberto Russo: Superconducting microwave resonators (co-supervision with Juergen Brugger, EPFL).
Anton Malovichko: Cantilever-based detection of bacteria activity (co-supervision with Giovanni Dietler, EPFL).
Past PhD students:
Matthieu Ruegg: RF controlled biodegradable implantable capsules (co-supervision with Juergen Brugger, EPFL).
Anthony Jean Beaumont: ESR and FMR magnetometry for CERN magnets (co-supervision with Marco Buzio, CERN).
Alessandro V. Matheoud: ESR spectroscopy from 500 MHz to 500 GHz.
Marco Grisi: Single-chip integrated electronics for NMR spectroscopy and magnetometry.
Enrica Montinaro: Microfabrication technologies for NMR, ESR and FMR on subnanoliter samples (co-supervision with Juergen Brugger, EPFL).
Mario Chavarria: Detection limits in chemical analysis by FAIMS (co-supervision with Juergen Brugger, EPFL).
Gabriele Gualco: Cryogenic single chip ESR detectors
Jens Anders: Integrated RF electronics for MRI.
Marc Lany: Single charge detectors in CMOS technology (co-supervision with Radivoje Popovic, EPFL).
Tolga Yalcin: Integrated microwave electronics for ESR.
Malika Bouterfas: Microdevices for ESR on small samples.
Scharazede Mouaziz: Cantilevers and Hall devices for MRFM (co-supervision with Juergen Brugger, EPFL).
Research
- Inductive detection of NMR, ESR, and FMR with single-chip integrated detectors. Applications to micro-imaging and micro-spectroscopy on subnanoliter samples.
- X-ray detection of FMR (XFMR).
- Mechanical detection of NMR with microcantilevers (MRFM).
- Scanning tunneling microscope (STM) based detection of ESR (STM-ESR).
Research Funding
Swiss National Science Foundation
European Union
(total contribution of about 4 MCHF from 2001 to 2019).
Teaching Details
Bachelor Course: General Physics III, 2016-present (200 students)
Bachelor Course: Sensors, 2005-present (130 students, shared with Prof. Ph. Renaud)
Master Course: Nanotechnology, 2012-present (45 students, shared with Prof. J. Brugger)
Doctoral School Course: Magnetic microsensors, 2003-present (15 students)
Past courses:
Doctoral School Course: Integrating sensors with electronics, 2006-2010 (15 students, shared with Prof. Popovic and Dr. P. Kejik)
Diploma and semester projects:
55 projects (1998-present)
Publications
Infoscience publications
Journals Articles
NMR microsystem for label-free characterization of 3D nanoliter microtissues
Scientific Reports. 2020-10-27. Vol. 10, p. 1-9, 18306. DOI : 10.1038/s41598-020-75480-0.Thermomechanical Nanostraining of Two-Dimensional Materials
Nano Letters. 2020-10-08. Vol. 20, num. 11, p. 8250-8257. DOI : 10.1021/acs.nanolett.0c03358.Reversible Drug Delivery: Thermal and pH Sensitive Composite Membrane for On‐Demand Drug Delivery by Applying an Alternating Magnetic Field (Adv. Mater. Interfaces 17/2020)
Advanced Materials Interfaces. 2020-09-11. Vol. 7, num. 17. DOI : 10.1002/admi.202070095.Thermal and pH Sensitive Composite Membrane for On-Demand Drug Delivery by Applying an Alternating Magnetic Field
Advanced Materials Interfaces. 2020-07-12. Vol. 7, num. 17, p. 2000733. DOI : 10.1002/admi.202000733.Single chip dynamic nuclear polarization microsystem
Analytical Chemistry. 2020-06-12. DOI : 10.1021/acs.analchem.0c01221.Thermomechanical Nanocutting of 2D Materials
Advanced Materials. 2020-06-11. p. 2001232. DOI : 10.1002/adma.202001232.Microwave inductive proximity sensors with sub-pm/Hz1/2 resolution
Sensors and Actuators A: Physical. 2019-08-15. Vol. 295, p. 259-265. DOI : 10.1016/j.sna.2019.05.041.Biodegradable Frequency‐Selective Magnesium Radio‐Frequency Microresonators for Transient Biomedical Implants
Advanced Functional Materials. 2019-08-07. Vol. 29, num. 39, p. 1903051. DOI : 10.1002/adfm.201903051.CMOS and 3D Printing for NMR Spectroscopy at the Single Embryo Scale
Chimia. 2019-08-01. Vol. 73, num. 7-8, p. 635-635. DOI : 10.2533/chimia.2019.635.A Low-Power Microwave HEMT $LC$ Oscillator Operating Down to 1.4 K
IEEE Transactions on Microwave Theory and Techniques. 2019-06-03. Vol. 67, num. 7, p. 2782-2792. DOI : 10.1109/TMTT.2019.2916552.Ferrimagnetic resonance field sensors for particle accelerators
Review Of Scientific Instruments. 2019-06-01. Vol. 90, num. 6, p. 065005. DOI : 10.1063/1.5097508.Transient Electronics: Biodegradable Frequency‐Selective Magnesium Radio‐Frequency Microresonators for Transient Biomedical Implants (Adv. Funct. Mater. 39/2019)
Advanced Functional Materials. 2019. Vol. 29, num. 39, p. 1970270. DOI : 10.1002/adfm.201970270.A single-chip integrated transceiver for high field NMR magnetometry
Review Of Scientific Instruments. 2019-01-01. Vol. 90, num. 1, p. 015001. DOI : 10.1063/1.5066436.A single chip electron spin resonance detector based on a single high electron mobility transistor
Journal of Magnetic Resonance. 2018-07-05. Vol. 294, p. 59-70. DOI : 10.1016/j.jmr.2018.07.002.3D printed microchannels for sub-nL NMR spectroscopy
PLOS ONE. 2018-05-09. Vol. 13, num. 5, p. e0192780. DOI : 10.1371/journal.pone.0192780.Single-chip electron spin resonance detectors operating at 50 GHz, 92 GHz, and 146 GHz
Journal of Magnetic Resonance. 2017. Vol. 278, p. 113-121. DOI : 10.1016/j.jmr.2017.03.013.High sensitivity field asymmetric ion mobility spectrometer
Review of Scientific Instruments. 2017. Vol. 88, num. 3, p. 035115-1-035115-13. DOI : 10.1063/1.4978960.NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes
Scientific Reports. 2017. DOI : 10.1038/srep44670.A low-power high-sensitivity single-chip receiver for NMR microscopy
Journal Of Magnetic Resonance. 2016. Vol. 266, p. 41-50. DOI : 10.1016/j.jmr.2016.03.004.A broadband single-chip transceiver for multi-nuclear NMR probes
Review Of Scientific Instruments. 2015. Vol. 86, num. 4. DOI : 10.1063/1.4916206.Frequency jumps in single chip microwave LC oscillators
Applied Physics Letters. 2014. Vol. 105, num. 24, p. 242102. DOI : 10.1063/1.4904417.Cryogenic single-chip electron spin resonance detector
Journal of Magnetic Resonance. 2014. Vol. 247, p. 96-103. DOI : 10.1016/j.jmr.2014.08.013.Cell force measurements in 3D microfabricated environments based on compliant cantilevers
Lab on a Chip. 2014. Vol. 14, num. 2, p. 286-293. DOI : 10.1039/c3lc51021b.Single Superparamagnetic Bead Detection and Direct Tracing of Bead Position Using Novel Nanocomposite Nano-Hall Sensors
Ieee Transactions On Nanotechnology. 2013. Vol. 12, num. 5, p. 668-673. DOI : 10.1109/Tnano.2013.2266733.Room temperature strong coupling between a microwave oscillator and an ensemble of electron spins
Journal Of Magnetic Resonance. 2013. Vol. 231, p. 133-140. DOI : 10.1016/j.jmr.2013.04.004.Active Integrated Tracking Detectors for MRI-Guided Interventions
Biomedical Engineering-Biomedizinische Technik. 2012. Vol. 57, p. 907. DOI : 10.1515/bmt-2012-4407.Integrated active tracking detector for MRI-guided interventions
Magnetic Resonance In Medicine. 2012. Vol. 67, p. 290-296. DOI : 10.1002/mrm.23112.A fully integrated IQ-receiver for NMR microscopy
Journal Of Magnetic Resonance. 2011. Vol. 209, p. 1-7. DOI : 10.1016/j.jmr.2010.12.005.Photon energy dependence of the light pressure exerted onto a thin silicon slab
Physical Review B - Condensed Matter and Materials Physics. 2011. Vol. 83, num. 16, p. 165321. DOI : 10.1103/PhysRevB.83.165321.Granular Co-C nano-Hall sensors by focused-beam-induced deposition
Nanotechnology. 2010. Vol. 21, num. 11, p. 115503. DOI : 10.1088/0957-4484/21/11/115503.A single-chip array of NMR receivers
Journal Of Magnetic Resonance. 2009. Vol. 201, p. 239-249. DOI : 10.1016/j.jmr.2009.09.019.Double-resonant x-ray and microwave absorption: Atomic spectroscopy of precessional orbital and spin dynamics
Physical Review B. 2009. Vol. 79, num. 22. DOI : 10.1103/PhysRevB.79.224425.Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements
Review of Scientific Instruments. 2009. Vol. 80, num. 12, p. 123902. DOI : 10.1063/1.3267192.Electron counting at room temperature in an avalanche bipolar transistor
Applied Physics Letters. 2008. Vol. 92, num. 2, p. 022111. DOI : 10.1063/1.2830015.Single-chip detector for electron spin resonance spectroscopy
Review Of Scientific Instruments. 2008. Vol. 79, p. 094105. DOI : 10.1063/1.2969657.Element-resolved x-ray ferrimagnetic and ferromagnetic resonance spectroscopy
New journal of physics. 2008. Vol. 10, p. 013011. DOI : 10.1088/1367-2630/10/1/013011.Two-dimensional magnetic resonance force microscopy using full-volume Fourier and Hadamard encoding
Physical Review B. 2008. Vol. 78, p. 214401 (5 pages). DOI : 10.1103/PhysRevB.78.214401.Direct observation of nuclear spin diffusion in real space
Physics Review Letters. 2007. Vol. 99, p. 227603. DOI : 10.1103/PhysRevLett.99.227603.Polymer-based cantilevers with integrated electrodes
IEEE Journal of Microelectromechanical Systems. 2006. Vol. 15, num. 4, p. 890-895. DOI : 10.1109/JMEMS.2006.879376.Combined Al-protection and HF-vapor release process for ultrathin single crystal silicon cantilevers
Microelectronic Engineering. 2006. Vol. 83, num. 4-9, p. 1306-1308. DOI : 10.1016/j.mee.2006.01.218.Electrically conducting probes with full tungsten cantilever and tip for scanning probe applications
Nanotechnology. 2006. Vol. 17, num. 5, p. 1464-1469. DOI : 10.1088/0957-4484/17/5/050.Superparamagnetic microbead inductive detector
REVIEW OF SCIENTIFIC INSTRUMENTS. 2005. Vol. 76, num. 8. DOI : 10.1063/1.1988131.X-ray ferromagnetic resonance spectroscopy
Applied Physics Letters. 2005. Vol. 87, num. 15, p. 1-3. DOI : 10.1063/1.2089180.Microscopic four-point probe based on SU-8 cantilevers
Virtual Journal of Nanoscale Science & Technology. 2005. Vol. 12, num. 26.Microscopic four-point probe based on SU-8 cantilevers
Review of Scientific Instruments. 2005. Vol. 76, num. 12, p. 125102 (4 pages). DOI : 10.1063/1.2140443.Submicrometer Hall devices fabricated by focused electron-beam-induced deposition
Virtual Journal of Nanoscale Science & Technology. 2005. Vol. 86, num. 042503.Submicrometer Hall devices fabricated by focused electron-beam-induced deposition
Applied Physics Letters. 2005. Vol. 86, num. 4, p. 042503 (3 pages). DOI : 10.1063/1.1856134.Micro-Hall devices: performance, technologies and applications
SENSORS AND ACTUATORS A-PHYSICAL. 2003. Vol. 106, num. 1-3, p. 314-320. DOI : 10.1016/S0924-4247(03)00192-4.Electron-spin resonance probe based on a 100 mu m planar microcoil
REVIEW OF SCIENTIFIC INSTRUMENTS. 2003. Vol. 74, num. 11, p. 4794-4798. DOI : 10.1063/1.1621064.Planar microcoil-based microfluidic NMR probes
Journal of Magnetic Resonance. 2003. Vol. 164, num. 2, p. 242-255. DOI : 10.1016/S1090-7807(03)00151-4.Detection of a single magnetic microbead using a miniaturized silicon Hall sensor
Applied Physics Letters. 2002. Vol. 80, num. 22, p. 4199-4201. DOI : 10.1063/1.1483909.High-Q factor RF planar microcoils for micro-scale NMR spectroscopy
Sensors and Actuators, A: Physical. 2002. Vol. 97-98, num. null, p. 280-288. DOI : 10.1016/S0924-4247(01)00847-0.Fully integrated probe for proton nuclear magnetic resonance magnetometry
Review of Scientific Instruments. 2001. Vol. 72, num. 6, p. 2764-2768. DOI : 10.1063/1.1374599.Hall detection of magnetic resonance
Applied Physics Letters. 2001. Vol. 79, num. 10, p. 1498-1500. DOI : 10.1063/1.1399306.Realised examples of microsystems and their applications
MEASUREMENT & CONTROL. 2000. Vol. 33, num. 9, p. 261-264.An NMR magnetometer with planar microcoils and integrated electronics for signal detection and amplification
SENSORS AND ACTUATORS A-PHYSICAL. 1998. Vol. 67, num. 1-3, p. 18-23. DOI : 10.1016/S0924-4247(97)01722-6.The variable density gas jet internal target for Experiment 835 at Fermilab
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1998. Vol. 410, num. 2, p. 195-205. DOI : 10.1016/S0168-9002(98)00236-8.Production of antihydrogen in relativistic collisions
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997. Vol. 391, num. 1, p. 201-204. DOI : 10.1016/S0168-9002(96)01197-7.A high-flow hydrogen dissociator based on a surface-wave discharge
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997. Vol. 398, num. 2-3, p. 157-161. DOI : 10.1016/S0168-9002(97)00823-1.Observation of antihydrogen production in flight at CERN
Hyperfine Interactions. 1997. Vol. 109, num. 1-4, p. 191-203. DOI : 10.1023/A:1012609601849.Production of antihydrogen
Physics Letters B. 1996. Vol. 368, num. 3, p. 251-258. DOI : 10.1016/0370-2693(96)00005-6.The internal Xe-jet target for the formation of antihydrogen (H̄) atoms at CERN LEAR
Nuovo Cimento della Societa Italiana di Fisica A. 1996. Vol. 109, num. 11, p. 1581-1590. DOI : 10.1007/BF02778241.Selected publications
A. V. Matheoud, N. Sahin, L.Frehner, G. Boero Sensors & Actuators A 295, 259 (2019) |
Microwave inductive proximity sensors with sub-pm/Hz^1/2 resolution |
A. V. Matheoud, N. Sahin, G. Boero IEEE Transactions on Microwave Theory and Techniques 67, 2782 (2019) |
A low power microwave HEMT LC oscillator operating down to 1.4 K |
M. Grisi, G. M. Conley,P. Sommer,J. Tinembart, G. Boero Rev. Sci. Instrum. 90, 015001 (2019) |
A single-chip integrated transceiver for high field NMR magnetometry |
A. Beaumont, M. Buzio, G. Boero Rev. Sci. Instrum. 90, 065005 (2019) |
Ferrimagnetic resonance field sensors for particle accelerators |
M. Rüegg, R. Blum, G. Boero, J. Brugger Advanced Functional Materials 2019, 1903051 (2019) |
Biodegradable frequency‐selective magnesium radio‐frequency microresonators for transient biomedical implants |
A. V. Matheoud, N. Sahin, G. Boero Journal of Magnetic Resonance 294, 59-70(2018) |
A single chip electron spin resonance detector based on a single high electron mobility transistor |
E. Montinaro, M. Grisi, M. C. Letizia, L. Pethö, M. A. M. Gijs, R. Guidetti, J. Michler, J. Brugger, G. Boero PLoS ONE 13(5),e0192780 (2018) |
3D printed microchannels for sub-nL NMR spectroscopy |
A. Capozzi, T. Cheng, G. Boero, C. Roussel, A. Comment Nature Communications 8, 15757 (2017) |
Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized substrates |
A. V. Matheoud, G. Gualco, M. Jeong, I. Zivkovic, J. Brugger, H. M. Rønnow, J. Anders, G. Boero Journal of Magnetic Resonance 278, 113-121 (2017) |
Single-chip electron spin resonance detectors operating at 50 GHz, 92 GHz, and 146 GHz |
E. Montinaro, M. Grisi, M. C. Letizia, L. Pethö, M. A. M. Gijs, R. Guidetti, J. Michler, J. Brugger, G. Boero arXiv:1707.05500 (2017) |
3D printed microchannels for sub-nL NMR spectroscopy |
M. Chavarria, A. Matheoud, P. Marmillod, Y. Liu, D. Kong, J. Brugger, G. Boero Review Scientific Instruments 88, 035115 (2017) |
High sensitivity field asymmetric ion mobility spectrometer |
M. Grisi, F. Vincent, B. Volpe, R. Guidetti, N. Harris, A. Beck, G. Boero Scientific Reports 7,44670 (2017) |
NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes |
J. Anders, J. Handwerker, M. Ortmanns, G. Boero Journal of Magnetic Resonance 266, 41–50 (2016) |
A low-power high-sensitivity single-chip receiver for NMR microscopy |
I. Kovacevic, P. Babkevich, M. Jeong, J. O. Piatek, G. Boero, H. M. Ronnow Physical Review B 94, 214433 (2016) |
Probing strongly hybridized nuclear-electronic states in a model quantum ferromagnet |
M. Grisi, B. Volpe, R. Guidetti, N. Harris, G. Boero arXiv:1511.06719 (2015) |
Nuclear magnetic resonance spectroscopy of single subnanoliter ova |
A. Capozzi, J. N. Hyacinthe, T. Cheng, T. Eichhorn, G. Boero, C. Roussel,J. van der Klink, A. Comment Journal of Physical Chemistry C 119, 22632 (2015) |
Photo-induced non-persistent radicals as polarizing agents for X-nuclei dissolution-DNP |
M. Grisi, G. Gualco, G. Boero Review Scientific Instruments 86, 044703 (2015) |
A broadband single-chip transceiver for multi-nuclear NMR probes |
G. Gualco, J. Anders, S. Alberti, A. Sienkiewicz, L. Forro, G. Boero Journal of Magnetic Resonance 247, 96-103 (2014) |
Cryogenic single-chip electron spin resonance detector |
G. Gualco, M. Grisi, G. Boero Applied Physics Letters 105, 242102 (2014) |
Frequency jumps in single-chip microwave LC-oscillators |
M. Marelli, N. Gadhari, G. Boero, M. Chiquet, and J. Brugger Lab on chip 14, 286 (2014) |
Cell force measurements in 3D microfabricated environments based on compliant cantilevers |
M. S. Gabureac, L. Bernau, G. Boero, I. Utke IEEE Transactions on Nanotechnology 12, 668 (2013) |
Single superparamagnetic bead detection and direct tracing of bead position using novel nanocomposite Hall sensors |
G. Boero, G. Gualco, R. Lisowski, J. Anders, D. Suter, J. Brugger J. Magn. Reson. 231, 133 (2013) |
Room temperature strong coupling between a microwave oscillator and an ensemble of electron spins |
J. Anders, P. SanGiorgio, X. Deligianni, F. Santini, K. Scheffler, G. Boero Magn. Reson. Medicine 67, 290 (2012) |
Integrated active tracking detector for MRI-guided interventions |
J. Anders, A. Angerhofer, G. Boero J. Magn. Reson. 217,19 (2012) |
K-band single chip electron spin resonance detector |
F. K. Reinhart, G. Boero Phys. Rev. B 83, 165321 (2011) |
Photon energy dependence of the light pressure exerted onto a thin silicon slab |
J. Anders, P. SanGiorgio, G. Boero J. Magn. Reson. 209, 1 (2011) |
A fully integrated IQ-receiver for NMR microscopy |
M. Gabureac, L. Bernau, I. Utke, G. Boero Nanotechnology 21, 115503 (2010) |
Granular Co-C nano-Hall sensors by focused-beam-induced deposition |
J. Anders, G. Chiaramonte, P. SanGiorgio, G. Boero J. Magn. Res. 201, 239 (2009) |
A single chip array of NMR receivers |
G. Boero, S. Rusponi, J. Kavich, A. Lodi Rizzini, C. Piamonteze, F. Nolting, C. Tieg, J. Thiele, and P. Gambardella Rev. Sci. Instrum. 80, 123902 (2009) |
Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements |
G. Boero, S. Rusponi, P. Bencok, R. Meckenstock, J.-U. Thiele, F. Nolting, and P. Gambardella Phys. Rev. B 79,224425 (2009) |
Double resonant x-ray and microwave absorption: atomic spectroscopy of precessional orbital and spin dynamics |
T. Yalcin, G. Boero Rev. Sci. Instrum. 79, 094105 (2008) |
Single chip detector for electron spin resonance spectroscopy |
G.Boero, S.Mouaziz, S.Rusponi, P.Bencok, F.Nolting,S.Stepanow and P.Gambardella New J. Phys. 10, 013011 (2008) |
Element-resolved x-ray ferrimagnetic and ferromagnetic resonance spectroscopy |
M. Lany, G. Boero, R. Popovic Appl. Phys. Lett. 92, 022111 (2008) |
Electron counting at room temperature in an avalanche bipolar transistor |
K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier Phys. Rev. B 78, 214401 (2008) |
Two-dimensional magnetic resonance force microscopy using full-volume Fourier and Hadamard encoding |
Kai W. Eberhardt,S. Mouaziz, G. Boero,J. Brugger, and B. H. Meier Phys. Rev. Lett. 99,227603 (2007) |
Direct Observation of Nuclear Spin Diffusion in Real Space |
A. Perentes, G. Sinicco, G. Boero, B. Dwir, P. Hoffmann J. Vac. Sci. Technol. B 25, 2228 (2007) |
Focused electron beam induced deposition of nickel |
S. Mouaziz, G. Boero, G. Moresi, C. Degen, Q. Liu, B. Meier, J. Brugger Microelectr. Eng. 83, 1306 (2006) |
Combined Al-protection and HF-vapor release process for ultrathin single crystal silicon cantilevers |
S. Mouaziz, G. Boero, R. Popovic, J. Brugger Journal of Microelectromechanical systems 15, 890 (2006) |
Polymer-based cantilevers with integrated electrodes |
J. A. J. Steen, J. Hayakawa, T. Harada, K. Lee, F. Calame, G. Boero, A. J. Kulik, and J. Brugger Nanotechnology 17, 1464 (2006) |
Electrically conducting probes with full tungsten cantilever and tip for scanning probe applications |
P. Kejik, G. Boero, M. Demierre, R. S. Popovic Sensor Actuat. A 129, 212 (2006) |
An integrated micro-Hall probe for scanning magnetic microscopy |
S. Keller, S. Mouaziz, G. Boero, and J. Brugger Rev. Sci. Instrum. 76, 125102 (2005) |
Microscopic four-point probe based on SU-8 cantilevers |
G. Boero, S. Rusponi, P. Bencok, R. S. Popovic, H. Brune, P. Gambardella Appl. Phys. Lett. 87, 152503 (2005) |
X-ray ferromagnetic resonance spectroscopy |
G. Boero, I. Utke, T. Bret, N. Quack, M. Todorova, S. Mouaziz, P. Kejik, J. Brugger,R. S. Popovic, and P. Hoffmann Appl. Phys. Lett. 86, 042503 (2005) |
Submicrometer Hall devices fabricated by focused electron-beam-induced deposition |
M. Lany, G. Boero, R. S. Popovic, Superparamagnetic microbead inductive detector Rev. Sci. Instrum. 76, 084301 (2005) |
Superparamagnetic microbead inductive detector |
C. Massin, F. Vincent, A. Homsy, K. Ehrmann, G. Boero, P.-A. Besse, A. Daridon, E. Verpoorte, N.F. de Rooij, and R.S. Popovic J. Magn. Reson. 164, 242 (2003) |
Planar microcoil-based microfluidic NMR probes |
G. Boero, M. Bouterfas, C. Massin, F. Vincent, P. A. Besse, R. S. Popovic, A. Schweiger Rev. Sci. Instrum. 74, 4794 (2003) |
Electron spin resonance probe based on a 100 um planar microcoil |
G. Boero, M. Demierre, P.-.A. Besse, R.S. Popovic Sensors Actuat. A 106, 314 (2003) |
Micro-Hall devices: performance, technologies and applications |
P. A. Besse, G. Boero, M. Demierre, V. Pott, R. S. Popovic Appl. Phys. Lett. 80, 4199 (2002) |
Detection of a single magnetic microbead using a miniaturized silicon Hall sensor |
C. Massin, G. Boero, F. Vincent, J. Abenhaim, P. A. Besse, R. S. Popovic Sensors Actuat. A 97-98, 280 (2002) |
High-Q factor RF planar microcoils for micro-scale NMR spectroscopy |
G. Boero, P. A. Besse, R. S. Popovic Appl. Phys. Lett. 79, 1498 (2001) |
Hall detection of magnetic resonance |
G. Boero, J. Frounchi, B. Furrer, P. -A. Besse, R. S. Popovic Rev. Sci. Instrum. 72, 2764 (2001) |
Fully integrated probe for proton nuclear magnetic resonance magnetometry |
P. A. Besse, C. Schott, G. Boero, F. Burger, R. S. Popovic Measurement and Control 33, 261 (2000) |
Realised examples of microsystems and their applications |
D. Allspach, A. Hahn, C. Kendziora, S. Pordes, G. Boero, G. Garzoglio, M. Macri, M. Marinelli, M. Pallavicini, E. Robutti Nucl. Instrum. & Meth. A 410, 195 (1998) |
The variable density gas jet internal target for Experiment 835 at Fermilab |
G. Boero, C. de Raad Iseli, P. A. Besse, R. S. Popovic Sensor. and Actuat. A A67, 18-23 (1998) |
An NMR magnetometer with planar microcoils and integrated electronics for signal detection and amplification |
G. Boero, W. Kubischta, P. Leprince Nucl. Instrum. & Meth. A 398, 157 (1997) |
A high-flow hydrogen dissociator based on a surface-wave discharge |
W. Oelert, G. Baur, G. Boero, S. Brauksiepe, A. Buzzo, W. Eyrich, R. Geyer, D. Grzonka, J. Hauffe, K. Kilian, M. LoVetere, M. Macri, M. Moosburger, R. Nellen, S. Passaggio, A. Pozzo, K. Roehrich, K. Sachs, G. Schepers, T. Sefzick, R. S. Simon, R. Stratman Hyp. Inter. 109, 191 (1997) |
Observation of antihydrogen production in flight at CERN |
G. Baur, G. Boero, S. Brauksiepe, A. Buzzo, W. Eyrich, R. Geyer, D. Grzonka, J. Hauffe, K. Kilian, M. LoVetere, M. Macri, M. Moosburger, R. Nellen, W. Oelert, S. Passaggio, A. Pozzo, K. Roehrich, K. Sachs, G. Schepers, T. Sefzick, R. S. Simon, R. Stratman Nucl. Instrum. & Meth. A 391, 201 (1997) |
Production of antihydrogen in relativistic collisions |
G. Boero, M. LoVetere, M. Macri, S. Passaggio, A. Pozzo Nuovo Cimento A 109, 1581 (1996) |
The internal Xe-jet target for the formation of antihydrogen (H) atoms at CERN LEAR |
D. H. Allspach, C. L. Kendziora, M. Marinelli, M. Macri, E. Robutti, G. Boero Adv. Cryo. Eng. 41, 685 (1996) |
Refrigerated hydrogen gas jet for the Fermilab antiproton accumulator |
G. Baur, G. Boero, S. Brauksiepe, A. Buzzo, W. Eyrich, R. Geyer, D. Grzonka, J. Hauffe, K. Kilian, M. LoVetere, M. Macri, M. Moosburger, R. Nellen, W. Oelert, S. Passaggio, A. Pozzo, K. Roehrich, K. Sachs, G. Schepers, T. Sefzick, R. S. Simon, R. Stratman Phys. Lett. B 368, 251 (1996) |
Production of antihydrogen |
Teaching & PhD
Teaching
Microengineering