Giovanni Boero

Senior Scientist
EPFL STI IMT LMIS1
BM 3110 (Bâtiment BM)
Station 17
CH-1015 Lausanne
Web site: Web site: https://lmis1.epfl.ch/
EPFL AVP-PGE EDMI-ENS
ELB 112 (Bâtiment ELB)
Station 11
CH-1015 Lausanne
+41 21 693 66 75
Office:
BM 3110
EPFL
>
VPA
>
VPA-AVP-PGE
>
AVP-PGE-EDOC
>
EDMI-ENS
EPFL P-SG CCE
CH C2 397 (Bâtiment CH)
Station 6
CH-1015 Lausanne
Web site: Web site: https://cce.epfl.ch/
Fields of expertise
Short CV
Born in Genova (Italy). Married with two children. Speaks italian, english, french.Workplaces:
1996-present: Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland.
1994-1996: Organization Europeenne pour la Recherche Nucleaire(CERN),Geneva,Switzerland.
1993-1995: Fermi National Accelerator Laboratory (FNAL), Batavia, IL, USA.
Education:
2000: PhD, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
1994: Laurea in Physics, Università di Genova, Genova, Italy
PhD Students Topics
Present PhD students:Nergiz Sahin: Single-chip ESR detectors: limit of detection, applications, and exotic phenomena.
Reza Farsi: Ultra-low 1/f phase noise integrated oscillators.
Roberto Russo: Superconducting microwave resonators (co-supervision with Juergen Brugger, EPFL).
Andre Chatel: Superconducting microwave resonators for low temperature termometry (co-supervision with Hernan Furci, EPFL)
Past PhD students:
Anton Malovichko: Cantilever-based detection of bacteria activity (co-supervision with Giovanni Dietler, EPFL).
Matthieu Ruegg: RF controlled biodegradable implantable capsules (co-supervision with Juergen Brugger, EPFL).
Anthony Jean Beaumont: ESR and FMR magnetometry for CERN magnets (co-supervision with Marco Buzio, CERN).
Alessandro V. Matheoud: ESR spectroscopy from 500 MHz to 500 GHz.
Marco Grisi: Single-chip integrated electronics for NMR spectroscopy and magnetometry.
Enrica Montinaro: Microfabrication technologies for NMR, ESR and FMR on subnanoliter samples (co-supervision with Juergen Brugger, EPFL).
Mario Chavarria: Detection limits in chemical analysis by FAIMS (co-supervision with Juergen Brugger, EPFL).
Gabriele Gualco: Cryogenic single chip ESR detectors
Jens Anders: Integrated RF electronics for MRI.
Marc Lany: Single charge detectors in CMOS technology (co-supervision with Radivoje Popovic, EPFL).
Tolga Yalcin: Integrated microwave electronics for ESR.
Malika Bouterfas: Microdevices for ESR on small samples.
Scharazede Mouaziz: Cantilevers and Hall devices for MRFM (co-supervision with Juergen Brugger, EPFL).
Research
Methods and microdevices for nuclear magnetic resonance (NMR), electron spin resonance (ESR), ferromagnetic resonance (FMR) spectroscopy and imaging on subnanoliter samples:- Inductive detection of NMR, ESR, and FMR with single-chip integrated detectors. Applications to micro-imaging and micro-spectroscopy on subnanoliter samples.
- X-ray detection of FMR (XFMR).
- Mechanical detection of NMR with microcantilevers (MRFM).
- Scanning tunneling microscope (STM) based detection of ESR (STM-ESR).
Teaching Details
Present courses:Bachelor Course: General Physics III, 2016-present (200 students)
Bachelor Course: Sensors, 2005-present (160 students, shared with Prof. Ph. Renaud)
Master Course: Nanotechnology, 2012-present (45 students, shared with Prof. J. Brugger)
Doctoral School Course: Magnetic microsensors, 2003-present (15 students)
Past courses:
Doctoral School Course: Integrating sensors with electronics, 2006-2010 (15 students, shared with Prof. Popovic and Dr. P. Kejik)
Diploma and semester projects:
55 projects (1998-present)
Publications
Infoscience publications
Journals Articles
SU-8 cantilever with integrated pyrolyzed glass-like carbon piezoresistor
Microsystems & Nanoengineering. 2022-02-10. Vol. 8, num. 1, p. 22. DOI : 10.1038/s41378-022-00351-9.Precise Capillary‐Assisted Nanoparticle Assembly in Reusable Templates
Particle & Particle Systems Characterization. 2022-02-08. p. 1-8, 2100288. DOI : 10.1002/ppsc.202100288.NMR spectroscopy of a single mammalian early stage embryo
Journal Of Magnetic Resonance. 2022-02-01. Vol. 335, p. 107142. DOI : 10.1016/j.jmr.2021.107142.Stretchable Conductors Fabricated by Stencil Lithography and Centrifugal Force-Assisted Patterning of Liquid Metal
ACS Applied Electronic Materials. 2021-11-29. DOI : 10.1021/acsaelm.1c00884.NMR microsystem for label-free characterization of 3D nanoliter microtissues
Scientific Reports. 2020-10-27. Vol. 10, p. 1-9, 18306. DOI : 10.1038/s41598-020-75480-0.Thermomechanical Nanostraining of Two-Dimensional Materials
Nano Letters. 2020-10-08. Vol. 20, num. 11, p. 8250-8257. DOI : 10.1021/acs.nanolett.0c03358.Reversible Drug Delivery: Thermal and pH Sensitive Composite Membrane for On‐Demand Drug Delivery by Applying an Alternating Magnetic Field (Adv. Mater. Interfaces 17/2020)
Advanced Materials Interfaces. 2020-09-11. Vol. 7, num. 17, p. 2070095. DOI : 10.1002/admi.202070095.Thermal and pH Sensitive Composite Membrane for On-Demand Drug Delivery by Applying an Alternating Magnetic Field
Advanced Materials Interfaces. 2020-07-12. Vol. 7, num. 17, p. 2000733. DOI : 10.1002/admi.202000733.Single chip dynamic nuclear polarization microsystem
Analytical Chemistry. 2020-06-12. Vol. 92, num. 14, p. 9782–9789. DOI : 10.1021/acs.analchem.0c01221.Thermomechanical Nanocutting of 2D Materials
Advanced Materials. 2020-06-11. p. 2001232. DOI : 10.1002/adma.202001232.Microwave inductive proximity sensors with sub-pm/Hz1/2 resolution
Sensors and Actuators A: Physical. 2019-08-15. Vol. 295, p. 259-265. DOI : 10.1016/j.sna.2019.05.041.Biodegradable Frequency‐Selective Magnesium Radio‐Frequency Microresonators for Transient Biomedical Implants
Advanced Functional Materials. 2019-08-07. Vol. 29, num. 39, p. 1903051. DOI : 10.1002/adfm.201903051.CMOS and 3D Printing for NMR Spectroscopy at the Single Embryo Scale
Chimia. 2019-08-01. Vol. 73, num. 7-8, p. 635-635. DOI : 10.2533/chimia.2019.635.A Low-Power Microwave HEMT $LC$ Oscillator Operating Down to 1.4 K
IEEE Transactions on Microwave Theory and Techniques. 2019-06-03. Vol. 67, num. 7, p. 2782-2792. DOI : 10.1109/TMTT.2019.2916552.Ferrimagnetic resonance field sensors for particle accelerators
Review Of Scientific Instruments. 2019-06-01. Vol. 90, num. 6, p. 065005. DOI : 10.1063/1.5097508.Transient Electronics: Biodegradable Frequency‐Selective Magnesium Radio‐Frequency Microresonators for Transient Biomedical Implants (Adv. Funct. Mater. 39/2019)
Advanced Functional Materials. 2019. Vol. 29, num. 39, p. 1970270. DOI : 10.1002/adfm.201970270.A single-chip integrated transceiver for high field NMR magnetometry
Review Of Scientific Instruments. 2019-01-01. Vol. 90, num. 1, p. 015001. DOI : 10.1063/1.5066436.A single chip electron spin resonance detector based on a single high electron mobility transistor
Journal of Magnetic Resonance. 2018-07-05. Vol. 294, p. 59-70. DOI : 10.1016/j.jmr.2018.07.002.3D printed microchannels for sub-nL NMR spectroscopy
PLOS ONE. 2018-05-09. Vol. 13, num. 5, p. e0192780. DOI : 10.1371/journal.pone.0192780.Single-chip electron spin resonance detectors operating at 50 GHz, 92 GHz, and 146 GHz
Journal of Magnetic Resonance. 2017. Vol. 278, p. 113-121. DOI : 10.1016/j.jmr.2017.03.013.High sensitivity field asymmetric ion mobility spectrometer
Review of Scientific Instruments. 2017. Vol. 88, num. 3, p. 035115-1-035115-13. DOI : 10.1063/1.4978960.NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes
Scientific Reports. 2017. Vol. 7, p. 44670. DOI : 10.1038/srep44670.A low-power high-sensitivity single-chip receiver for NMR microscopy
Journal Of Magnetic Resonance. 2016. Vol. 266, p. 41-50. DOI : 10.1016/j.jmr.2016.03.004.A broadband single-chip transceiver for multi-nuclear NMR probes
Review Of Scientific Instruments. 2015. Vol. 86, num. 4, p. 044703. DOI : 10.1063/1.4916206.Frequency jumps in single chip microwave LC oscillators
Applied Physics Letters. 2014. Vol. 105, num. 24, p. 242102. DOI : 10.1063/1.4904417.Cryogenic single-chip electron spin resonance detector
Journal of Magnetic Resonance. 2014. Vol. 247, p. 96-103. DOI : 10.1016/j.jmr.2014.08.013.Cell force measurements in 3D microfabricated environments based on compliant cantilevers
Lab on a Chip. 2014. Vol. 14, num. 2, p. 286-293. DOI : 10.1039/c3lc51021b.Single Superparamagnetic Bead Detection and Direct Tracing of Bead Position Using Novel Nanocomposite Nano-Hall Sensors
Ieee Transactions On Nanotechnology. 2013. Vol. 12, num. 5, p. 668-673. DOI : 10.1109/Tnano.2013.2266733.Room temperature strong coupling between a microwave oscillator and an ensemble of electron spins
Journal Of Magnetic Resonance. 2013. Vol. 231, p. 133-140. DOI : 10.1016/j.jmr.2013.04.004.Active Integrated Tracking Detectors for MRI-Guided Interventions
Biomedical Engineering-Biomedizinische Technik. 2012. Vol. 57, p. 907. DOI : 10.1515/bmt-2012-4407.Integrated active tracking detector for MRI-guided interventions
Magnetic Resonance In Medicine. 2012. Vol. 67, p. 290-296. DOI : 10.1002/mrm.23112.A fully integrated IQ-receiver for NMR microscopy
Journal Of Magnetic Resonance. 2011. Vol. 209, p. 1-7. DOI : 10.1016/j.jmr.2010.12.005.Photon energy dependence of the light pressure exerted onto a thin silicon slab
Physical Review B - Condensed Matter and Materials Physics. 2011. Vol. 83, num. 16, p. 165321. DOI : 10.1103/PhysRevB.83.165321.Granular Co-C nano-Hall sensors by focused-beam-induced deposition
Nanotechnology. 2010. Vol. 21, num. 11, p. 115503. DOI : 10.1088/0957-4484/21/11/115503.A single-chip array of NMR receivers
Journal Of Magnetic Resonance. 2009. Vol. 201, p. 239-249. DOI : 10.1016/j.jmr.2009.09.019.Double-resonant x-ray and microwave absorption: Atomic spectroscopy of precessional orbital and spin dynamics
Physical Review B. 2009. Vol. 79, num. 22, p. 224425. DOI : 10.1103/PhysRevB.79.224425.Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements
Review of Scientific Instruments. 2009. Vol. 80, num. 12, p. 123902. DOI : 10.1063/1.3267192.Electron counting at room temperature in an avalanche bipolar transistor
Applied Physics Letters. 2008. Vol. 92, num. 2, p. 022111. DOI : 10.1063/1.2830015.Single-chip detector for electron spin resonance spectroscopy
Review Of Scientific Instruments. 2008. Vol. 79, p. 094105. DOI : 10.1063/1.2969657.Element-resolved x-ray ferrimagnetic and ferromagnetic resonance spectroscopy
New journal of physics. 2008. Vol. 10, p. 013011. DOI : 10.1088/1367-2630/10/1/013011.Two-dimensional magnetic resonance force microscopy using full-volume Fourier and Hadamard encoding
Physical Review B. 2008. Vol. 78, p. 214401 (5 pages). DOI : 10.1103/PhysRevB.78.214401.Direct observation of nuclear spin diffusion in real space
Physics Review Letters. 2007. Vol. 99, p. 227603. DOI : 10.1103/PhysRevLett.99.227603.Polymer-based cantilevers with integrated electrodes
IEEE Journal of Microelectromechanical Systems. 2006. Vol. 15, num. 4, p. 890-895. DOI : 10.1109/JMEMS.2006.879376.Combined Al-protection and HF-vapor release process for ultrathin single crystal silicon cantilevers
Microelectronic Engineering. 2006. Vol. 83, num. 4-9, p. 1306-1308. DOI : 10.1016/j.mee.2006.01.218.Electrically conducting probes with full tungsten cantilever and tip for scanning probe applications
Nanotechnology. 2006. Vol. 17, num. 5, p. 1464-1469. DOI : 10.1088/0957-4484/17/5/050.Superparamagnetic microbead inductive detector
Review of Scientific Instruments. 2005. Vol. 76, num. 8, p. 084301. DOI : 10.1063/1.1988131.X-ray ferromagnetic resonance spectroscopy
Applied Physics Letters. 2005. Vol. 87, num. 15, p. 1-3. DOI : 10.1063/1.2089180.Microscopic four-point probe based on SU-8 cantilevers
Virtual Journal of Nanoscale Science & Technology. 2005. Vol. 12, num. 26.Microscopic four-point probe based on SU-8 cantilevers
Review of Scientific Instruments. 2005. Vol. 76, num. 12, p. 125102 (4 pages). DOI : 10.1063/1.2140443.Submicrometer Hall devices fabricated by focused electron-beam-induced deposition
Virtual Journal of Nanoscale Science & Technology. 2005. Vol. 86, p. 042503.Submicrometer Hall devices fabricated by focused electron-beam-induced deposition
Applied Physics Letters. 2005. Vol. 86, num. 4, p. 042503 (3 pages). DOI : 10.1063/1.1856134.Micro-Hall devices: performance, technologies and applications
SENSORS AND ACTUATORS A-PHYSICAL. 2003. Vol. 106, num. 1-3, p. 314-320. DOI : 10.1016/S0924-4247(03)00192-4.Electron-spin resonance probe based on a 100 mu m planar microcoil
Review of Scientific Instruments. 2003. Vol. 74, num. 11, p. 4794-4798. DOI : 10.1063/1.1621064.Planar microcoil-based microfluidic NMR probes
Journal of Magnetic Resonance. 2003. Vol. 164, num. 2, p. 242-255. DOI : 10.1016/S1090-7807(03)00151-4.Detection of a single magnetic microbead using a miniaturized silicon Hall sensor
Applied Physics Letters. 2002. Vol. 80, num. 22, p. 4199-4201. DOI : 10.1063/1.1483909.High-Q factor RF planar microcoils for micro-scale NMR spectroscopy
Sensors and Actuators, A: Physical. 2002. Vol. 97-98, p. 280-288. DOI : 10.1016/S0924-4247(01)00847-0.Fully integrated probe for proton nuclear magnetic resonance magnetometry
Review of Scientific Instruments. 2001. Vol. 72, num. 6, p. 2764-2768. DOI : 10.1063/1.1374599.Hall detection of magnetic resonance
Applied Physics Letters. 2001. Vol. 79, num. 10, p. 1498-1500. DOI : 10.1063/1.1399306.Realised examples of microsystems and their applications
MEASUREMENT & CONTROL. 2000. Vol. 33, num. 9, p. 261-264.An NMR magnetometer with planar microcoils and integrated electronics for signal detection and amplification
SENSORS AND ACTUATORS A-PHYSICAL. 1998. Vol. 67, num. 1-3, p. 18-23. DOI : 10.1016/S0924-4247(97)01722-6.The variable density gas jet internal target for Experiment 835 at Fermilab
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1998. Vol. 410, num. 2, p. 195-205. DOI : 10.1016/S0168-9002(98)00236-8.Production of antihydrogen in relativistic collisions
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997. Vol. 391, num. 1, p. 201-204. DOI : 10.1016/S0168-9002(96)01197-7.A high-flow hydrogen dissociator based on a surface-wave discharge
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997. Vol. 398, num. 2-3, p. 157-161. DOI : 10.1016/S0168-9002(97)00823-1.Observation of antihydrogen production in flight at CERN
Hyperfine Interactions. 1997. Vol. 109, num. 1-4, p. 191-203. DOI : 10.1023/A:1012609601849.Production of antihydrogen
Physics Letters B. 1996. Vol. 368, num. 3, p. 251-258. DOI : 10.1016/0370-2693(96)00005-6.The internal Xe-jet target for the formation of antihydrogen (H̄) atoms at CERN LEAR
Nuovo Cimento della Societa Italiana di Fisica A. 1996. Vol. 109, num. 11, p. 1581-1590. DOI : 10.1007/BF02778241.Teaching & PhD
Teaching
Microengineering
PhD Programs
Doctoral Program in Microsystems and Microelectronics
Doctoral Program in Electrical Engineering
PhD Students
Chatel André, Farsi Reza, Russo Roberto, Sahin Solmaz Nergiz,Past EPFL PhD Students
Anders Jens , Beaumont Anthony Jean , Bouterfas Malika , Chavarria Varon Mario Andres , Grisi Marco , Gualco Gabriele , Henriksson Jonas Gustav , Lany Marc , Malovichko Anton , Matheoud Alessandro Valentino , Montinaro Enrica , Mouaziz Schahrazede-Lila , Rüegg Matthieu Jean Michel , Yalçin Tolga ,Courses
Sensors
Robotics practicals
- Teaching Robots to Accomplish a Manipulation Task
- Experimenting with haptic interfaces
- Controlling a serial robot ABB IRB 120
- Control of the Micro Delta Direct Drive robot
- LiniX, linear axis, assembly and control