Giovanni Boero

EPFL STI IMT LMIS1
BM 3110 (Bâtiment BM)
Station 17
1015 Lausanne
Web site: Web site: https://lmis1.epfl.ch/
EPFL STI IEM LMIS1
BM 3110 (Bâtiment BM)
Station 17
1015 Lausanne
+41 21 693 66 75
Office:
BM 3110
EPFL
>
VPA
>
VPA-AVP-PGE
>
AVP-PGE-EDOC
>
EDMI-ENS
EPFL STI IEM LMIS1
BM 3110 (Bâtiment BM)
Station 17
1015 Lausanne
+41 21 693 66 75
Office:
BM 3110
EPFL
>
VPA
>
VPA-AVP-PGE
>
AVP-PGE-EDOC
>
EDMI-GE
Web site: Web site: https://go.epfl.ch/phd-edmi
EPFL STI IEM LMIS1
BM 3110 (Bâtiment BM)
Station 17
1015 Lausanne
+41 21 693 66 75
Office:
BM 3110
EPFL
>
VPA
>
VPA-AVP-PGE
>
AVP-PGE-EDOC
>
CDOCT
Fields of expertise
Short CV
Born in Genova (Italy). Married with two children. Speaks italian, english, french.Workplaces:
1996-present: Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland.
1994-1996: Organization Europeenne pour la Recherche Nucleaire(CERN),Geneva,Switzerland.
1993-1995: Fermi National Accelerator Laboratory (FNAL), Batavia, IL, USA.
Education:
2000: PhD, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
1994: Laurea in Physics, Università di Genova, Genova, Italy
PhD Students Topics
Present PhD students:Nergiz Sahin: Single-chip dynamic nuclear polarization (DNP) microsystems.
Reza Farsi: Ultra-low 1/f phase noise integrated oscillators.
Roberto Russo: Superconducting microwave resonators (co-supervision with Juergen Brugger, EPFL).
Andre Chatel: Superconducting microwave resonators for low temperature termometry (co-supervision with Hernan Furci, EPFL)
Past PhD students:
Anton Malovichko: Cantilever-based detection of bacteria activity (co-supervision with Giovanni Dietler, EPFL).
Matthieu Ruegg: RF controlled biodegradable implantable capsules (co-supervision with Juergen Brugger, EPFL).
Anthony Jean Beaumont: ESR and FMR magnetometry for CERN magnets (co-supervision with Marco Buzio, CERN).
Alessandro V. Matheoud: ESR spectroscopy from 500 MHz to 500 GHz.
Marco Grisi: Single-chip integrated electronics for NMR spectroscopy and magnetometry.
Enrica Montinaro: Microfabrication technologies for NMR, ESR and FMR on subnanoliter samples (co-supervision with Juergen Brugger, EPFL).
Mario Chavarria: Detection limits in chemical analysis by FAIMS (co-supervision with Juergen Brugger, EPFL).
Gabriele Gualco: Cryogenic single chip ESR detectors
Jens Anders: Integrated RF electronics for MRI.
Marc Lany: Single charge detectors in CMOS technology (co-supervision with Radivoje Popovic, EPFL).
Tolga Yalcin: Integrated microwave electronics for ESR.
Malika Bouterfas: Microdevices for ESR on small samples.
Scharazede Mouaziz: Cantilevers and Hall devices for MRFM (co-supervision with Juergen Brugger, EPFL).
Research
Methods and microdevices for nuclear magnetic resonance (NMR), electron spin resonance (ESR), ferromagnetic resonance (FMR) spectroscopy and imaging on subnanoliter samples:- Inductive detection of NMR, ESR, and FMR with single-chip integrated detectors. Applications to micro-imaging and micro-spectroscopy on subnanoliter samples.
- X-ray detection of FMR (XFMR).
- Mechanical detection of NMR with microcantilevers (MRFM).
- Scanning tunneling microscope (STM) based detection of ESR (STM-ESR).
Teaching Details
Present courses:Bachelor Course: General Physics III, 2016-present (200 students)
Bachelor Course: Sensors, 2005-present (160 students, shared with Prof. Ph. Renaud)
Master Course: Nanotechnology, 2012-present (45 students, shared with Prof. J. Brugger)
Doctoral School Course: Magnetic microsensors, 2003-present (15 students)
Past courses:
Doctoral School Course: Integrating sensors with electronics, 2006-2010 (15 students, shared with Prof. Popovic and Dr. P. Kejik)
Diploma and semester projects:
55 projects (1998-present)
Publications
Infoscience publications
Journals Articles
Nanobridge Stencil Enabling High Resolution Arbitrarily Shaped Metallic Thin Films on Various Substrates
Advanced Materials Technologies. 2022-12-04. DOI : 10.1002/admt.202201119.Comparison of electrical and optical transduction modes of DNA-wrapped SWCNT nanosensors for the reversible detection of neurotransmitters.
Biosensors & Bioelectronics. 2022-11-15. Vol. 216, p. 114642. DOI : 10.1016/j.bios.2022.114642.Nanopore Generation in Biodegradable Silk/Magnetic Nanoparticle Membranes by an External Magnetic Field for Implantable Drug Delivery
Acs Applied Materials & Interfaces. 2022-08-29. Vol. 14, num. 35, p. 40418–40426. DOI : 10.1021/acsami.2c10603.SU-8 cantilever with integrated pyrolyzed glass-like carbon piezoresistor
Microsystems & Nanoengineering. 2022-02-10. Vol. 8, num. 1, p. 22. DOI : 10.1038/s41378-022-00351-9.Precise Capillary‐Assisted Nanoparticle Assembly in Reusable Templates
Particle & Particle Systems Characterization. 2022-02-08. p. 1-8, 2100288. DOI : 10.1002/ppsc.202100288.NMR spectroscopy of a single mammalian early stage embryo
Journal Of Magnetic Resonance. 2022-02-01. Vol. 335, p. 107142. DOI : 10.1016/j.jmr.2021.107142.Stretchable Conductors Fabricated by Stencil Lithography and Centrifugal Force-Assisted Patterning of Liquid Metal
ACS Applied Electronic Materials. 2021-11-29. Vol. 3, num. 12, p. 5423–5432. DOI : 10.1021/acsaelm.1c00884.NMR microsystem for label-free characterization of 3D nanoliter microtissues
Scientific Reports. 2020-10-27. Vol. 10, p. 1-9, 18306. DOI : 10.1038/s41598-020-75480-0.Thermomechanical Nanostraining of Two-Dimensional Materials
Nano Letters. 2020-10-08. Vol. 20, num. 11, p. 8250-8257. DOI : 10.1021/acs.nanolett.0c03358.Reversible Drug Delivery: Thermal and pH Sensitive Composite Membrane for On‐Demand Drug Delivery by Applying an Alternating Magnetic Field (Adv. Mater. Interfaces 17/2020)
Advanced Materials Interfaces. 2020-09-11. Vol. 7, num. 17, p. 2070095. DOI : 10.1002/admi.202070095.Thermal and pH Sensitive Composite Membrane for On-Demand Drug Delivery by Applying an Alternating Magnetic Field
Advanced Materials Interfaces. 2020-07-12. Vol. 7, num. 17, p. 2000733. DOI : 10.1002/admi.202000733.Single chip dynamic nuclear polarization microsystem
Analytical Chemistry. 2020-06-12. Vol. 92, num. 14, p. 9782–9789. DOI : 10.1021/acs.analchem.0c01221.Thermomechanical Nanocutting of 2D Materials
Advanced Materials. 2020-06-11. p. 2001232. DOI : 10.1002/adma.202001232.Microwave inductive proximity sensors with sub-pm/Hz1/2 resolution
Sensors and Actuators A: Physical. 2019-08-15. Vol. 295, p. 259-265. DOI : 10.1016/j.sna.2019.05.041.Biodegradable Frequency‐Selective Magnesium Radio‐Frequency Microresonators for Transient Biomedical Implants
Advanced Functional Materials. 2019-08-07. Vol. 29, num. 39, p. 1903051. DOI : 10.1002/adfm.201903051.CMOS and 3D Printing for NMR Spectroscopy at the Single Embryo Scale
Chimia. 2019-08-01. Vol. 73, num. 7-8, p. 635-635. DOI : 10.2533/chimia.2019.635.A Low-Power Microwave HEMT $LC$ Oscillator Operating Down to 1.4 K
IEEE Transactions on Microwave Theory and Techniques. 2019-06-03. Vol. 67, num. 7, p. 2782-2792. DOI : 10.1109/TMTT.2019.2916552.Ferrimagnetic resonance field sensors for particle accelerators
Review Of Scientific Instruments. 2019-06-01. Vol. 90, num. 6, p. 065005. DOI : 10.1063/1.5097508.Transient Electronics: Biodegradable Frequency‐Selective Magnesium Radio‐Frequency Microresonators for Transient Biomedical Implants (Adv. Funct. Mater. 39/2019)
Advanced Functional Materials. 2019. Vol. 29, num. 39, p. 1970270. DOI : 10.1002/adfm.201970270.A single-chip integrated transceiver for high field NMR magnetometry
Review Of Scientific Instruments. 2019-01-01. Vol. 90, num. 1, p. 015001. DOI : 10.1063/1.5066436.A single chip electron spin resonance detector based on a single high electron mobility transistor
Journal of Magnetic Resonance. 2018-07-05. Vol. 294, p. 59-70. DOI : 10.1016/j.jmr.2018.07.002.3D printed microchannels for sub-nL NMR spectroscopy
PLOS ONE. 2018-05-09. Vol. 13, num. 5, p. e0192780. DOI : 10.1371/journal.pone.0192780.Single-chip electron spin resonance detectors operating at 50 GHz, 92 GHz, and 146 GHz
Journal of Magnetic Resonance. 2017. Vol. 278, p. 113-121. DOI : 10.1016/j.jmr.2017.03.013.High sensitivity field asymmetric ion mobility spectrometer
Review of Scientific Instruments. 2017. Vol. 88, num. 3, p. 035115-1-035115-13. DOI : 10.1063/1.4978960.NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes
Scientific Reports. 2017. Vol. 7, p. 44670. DOI : 10.1038/srep44670.A low-power high-sensitivity single-chip receiver for NMR microscopy
Journal Of Magnetic Resonance. 2016. Vol. 266, p. 41-50. DOI : 10.1016/j.jmr.2016.03.004.A broadband single-chip transceiver for multi-nuclear NMR probes
Review Of Scientific Instruments. 2015. Vol. 86, num. 4, p. 044703. DOI : 10.1063/1.4916206.Frequency jumps in single chip microwave LC oscillators
Applied Physics Letters. 2014. Vol. 105, num. 24, p. 242102. DOI : 10.1063/1.4904417.Cryogenic single-chip electron spin resonance detector
Journal of Magnetic Resonance. 2014. Vol. 247, p. 96-103. DOI : 10.1016/j.jmr.2014.08.013.Cell force measurements in 3D microfabricated environments based on compliant cantilevers
Lab on a Chip. 2014. Vol. 14, num. 2, p. 286-293. DOI : 10.1039/c3lc51021b.Single Superparamagnetic Bead Detection and Direct Tracing of Bead Position Using Novel Nanocomposite Nano-Hall Sensors
Ieee Transactions On Nanotechnology. 2013. Vol. 12, num. 5, p. 668-673. DOI : 10.1109/Tnano.2013.2266733.Room temperature strong coupling between a microwave oscillator and an ensemble of electron spins
Journal Of Magnetic Resonance. 2013. Vol. 231, p. 133-140. DOI : 10.1016/j.jmr.2013.04.004.Active Integrated Tracking Detectors for MRI-Guided Interventions
Biomedical Engineering-Biomedizinische Technik. 2012. Vol. 57, p. 907. DOI : 10.1515/bmt-2012-4407.Integrated active tracking detector for MRI-guided interventions
Magnetic Resonance In Medicine. 2012. Vol. 67, p. 290-296. DOI : 10.1002/mrm.23112.A fully integrated IQ-receiver for NMR microscopy
Journal Of Magnetic Resonance. 2011. Vol. 209, p. 1-7. DOI : 10.1016/j.jmr.2010.12.005.Photon energy dependence of the light pressure exerted onto a thin silicon slab
Physical Review B - Condensed Matter and Materials Physics. 2011. Vol. 83, num. 16, p. 165321. DOI : 10.1103/PhysRevB.83.165321.Granular Co-C nano-Hall sensors by focused-beam-induced deposition
Nanotechnology. 2010. Vol. 21, num. 11, p. 115503. DOI : 10.1088/0957-4484/21/11/115503.A single-chip array of NMR receivers
Journal Of Magnetic Resonance. 2009. Vol. 201, p. 239-249. DOI : 10.1016/j.jmr.2009.09.019.Double-resonant x-ray and microwave absorption: Atomic spectroscopy of precessional orbital and spin dynamics
Physical Review B. 2009. Vol. 79, num. 22, p. 224425. DOI : 10.1103/PhysRevB.79.224425.Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements
Review of Scientific Instruments. 2009. Vol. 80, num. 12, p. 123902. DOI : 10.1063/1.3267192.Electron counting at room temperature in an avalanche bipolar transistor
Applied Physics Letters. 2008. Vol. 92, num. 2, p. 022111. DOI : 10.1063/1.2830015.Single-chip detector for electron spin resonance spectroscopy
Review Of Scientific Instruments. 2008. Vol. 79, p. 094105. DOI : 10.1063/1.2969657.Element-resolved x-ray ferrimagnetic and ferromagnetic resonance spectroscopy
New journal of physics. 2008. Vol. 10, p. 013011. DOI : 10.1088/1367-2630/10/1/013011.Two-dimensional magnetic resonance force microscopy using full-volume Fourier and Hadamard encoding
Physical Review B. 2008. Vol. 78, p. 214401 (5 pages). DOI : 10.1103/PhysRevB.78.214401.Direct observation of nuclear spin diffusion in real space
Physics Review Letters. 2007. Vol. 99, p. 227603. DOI : 10.1103/PhysRevLett.99.227603.Polymer-based cantilevers with integrated electrodes
IEEE Journal of Microelectromechanical Systems. 2006. Vol. 15, num. 4, p. 890-895. DOI : 10.1109/JMEMS.2006.879376.Combined Al-protection and HF-vapor release process for ultrathin single crystal silicon cantilevers
Microelectronic Engineering. 2006. Vol. 83, num. 4-9, p. 1306-1308. DOI : 10.1016/j.mee.2006.01.218.Electrically conducting probes with full tungsten cantilever and tip for scanning probe applications
Nanotechnology. 2006. Vol. 17, num. 5, p. 1464-1469. DOI : 10.1088/0957-4484/17/5/050.Superparamagnetic microbead inductive detector
Review of Scientific Instruments. 2005. Vol. 76, num. 8, p. 084301. DOI : 10.1063/1.1988131.X-ray ferromagnetic resonance spectroscopy
Applied Physics Letters. 2005. Vol. 87, num. 15, p. 1-3. DOI : 10.1063/1.2089180.Microscopic four-point probe based on SU-8 cantilevers
Virtual Journal of Nanoscale Science & Technology. 2005. Vol. 12, num. 26.Microscopic four-point probe based on SU-8 cantilevers
Review of Scientific Instruments. 2005. Vol. 76, num. 12, p. 125102 (4 pages). DOI : 10.1063/1.2140443.Submicrometer Hall devices fabricated by focused electron-beam-induced deposition
Virtual Journal of Nanoscale Science & Technology. 2005. Vol. 86, p. 042503.Submicrometer Hall devices fabricated by focused electron-beam-induced deposition
Applied Physics Letters. 2005. Vol. 86, num. 4, p. 042503 (3 pages). DOI : 10.1063/1.1856134.Micro-Hall devices: performance, technologies and applications
SENSORS AND ACTUATORS A-PHYSICAL. 2003. Vol. 106, num. 1-3, p. 314-320. DOI : 10.1016/S0924-4247(03)00192-4.Electron-spin resonance probe based on a 100 mu m planar microcoil
Review of Scientific Instruments. 2003. Vol. 74, num. 11, p. 4794-4798. DOI : 10.1063/1.1621064.Planar microcoil-based microfluidic NMR probes
Journal of Magnetic Resonance. 2003. Vol. 164, num. 2, p. 242-255. DOI : 10.1016/S1090-7807(03)00151-4.Detection of a single magnetic microbead using a miniaturized silicon Hall sensor
Applied Physics Letters. 2002. Vol. 80, num. 22, p. 4199-4201. DOI : 10.1063/1.1483909.High-Q factor RF planar microcoils for micro-scale NMR spectroscopy
Sensors and Actuators, A: Physical. 2002. Vol. 97-98, p. 280-288. DOI : 10.1016/S0924-4247(01)00847-0.Fully integrated probe for proton nuclear magnetic resonance magnetometry
Review of Scientific Instruments. 2001. Vol. 72, num. 6, p. 2764-2768. DOI : 10.1063/1.1374599.Hall detection of magnetic resonance
Applied Physics Letters. 2001. Vol. 79, num. 10, p. 1498-1500. DOI : 10.1063/1.1399306.Realised examples of microsystems and their applications
Measurement and Control. 2000. Vol. 33, num. 9, p. 261-264. DOI : 10.1177/002029400003300902.An NMR magnetometer with planar microcoils and integrated electronics for signal detection and amplification
SENSORS AND ACTUATORS A-PHYSICAL. 1998. Vol. 67, num. 1-3, p. 18-23. DOI : 10.1016/S0924-4247(97)01722-6.The variable density gas jet internal target for Experiment 835 at Fermilab
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1998. Vol. 410, num. 2, p. 195-205. DOI : 10.1016/S0168-9002(98)00236-8.Production of antihydrogen in relativistic collisions
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997. Vol. 391, num. 1, p. 201-204. DOI : 10.1016/S0168-9002(96)01197-7.A high-flow hydrogen dissociator based on a surface-wave discharge
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997. Vol. 398, num. 2-3, p. 157-161. DOI : 10.1016/S0168-9002(97)00823-1.Observation of antihydrogen production in flight at CERN
Hyperfine Interactions. 1997. Vol. 109, num. 1-4, p. 191-203. DOI : 10.1023/A:1012609601849.Production of antihydrogen
Physics Letters B. 1996. Vol. 368, num. 3, p. 251-258. DOI : 10.1016/0370-2693(96)00005-6.The internal Xe-jet target for the formation of antihydrogen (H̄) atoms at CERN LEAR
Nuovo Cimento della Societa Italiana di Fisica A. 1996. Vol. 109, num. 11, p. 1581-1590. DOI : 10.1007/BF02778241.Teaching & PhD
Teaching
Microengineering