Guillaume Anciaux

GC A2 494 (Bâtiment GC)
Station 18
CH-1015 Lausanne

GC A2 494 (Bâtiment GC)
Station 18
CH-1015 Lausanne



Administrative data


Teaching & PhD


  • Civil Engineering
  • Mathematics

PhD Programs

  • Doctoral Program in Civil and Environmental Engineering
  • Doctoral Program in Microsystems and Microelectronics
  • Doctoral Program in Mechanics

PhD Students


Numerical modelling of solids and structures

Solids and structures numerical modeling is addressed through the finite-element method. Purely analytic aspects are first presented, before describing numerical interpolation, integration and resolution of solid mechanics problems by using various finit... goto

Programming concepts in scientific computing

The aim of this course is to provide the background in scientific computing. The class includes a brief introduction to basic programming in c++, it then focus on object oriented programming and c++ specific programming techniques. goto

Scientific programming for Engineers

The students will acquire a solid knowledge on the processes necessary to design, write and use scientific software. Software design techniques will be used to program a multi-usage particles code, aiming at providing the link between algorithmic/complexi... goto


Research Topics

My research can be decomposed in three main blocks:

First, the main goal of my current research is the physical description of contact interactions. I performed numerous studies of this topic using different models from the continuum scale down to atomistic scale. Since atomic phenomena and macroscopic observations are linked, the physics of contact needs the simultaneous consideration of several scales. For instance, plasticity is a theory defined for the macroscopic scale whereas the origins should be studied at the nanoscale.

Because of the limitations of purely theoretical approaches, I employ numerical modeling to obtain results when a closed form solution is unreachable. At the macroscopic scale, I use Finite Element Method (FEM) and Boundary Element Method (BEM). Molecular Dynamics (MD) is employed at the atomic scale while for an intermediate description of crystalline plasticity Discrete Dislocation Dynamics (DDD) is an efficient model. Various coupling strategies I participate in are at the intersection of these three modeling techniques.

Finally, my computer science experience in numerical modeling and in programming allows a fast and efficient implementation of modeling ideas developed in LSMS. Also, I am the main developer of the LibMultiScale project which is a coupling framework having the possibility to allow parallel communications of MD, DDD and FEM so as to achieve concurrent coupling of scales. I am sharing the responsibility of the development of the Akantu finite element library which is a new project hosted by the LSMS. I believe that the scientific community can benefit of these two advanced 3D parallel codes dedicated to solid mechanics. My work contributes to open-source codes, so that the concepts and methods can be used, implemented and applied by researchers within LSMS, ENAC, EPFL and world-wide.