Hendrik Huwald
EPFL Valais Wallis
EPFL ENAC IIE CRYOS
Route des Ronquos 86
1951 Sion
+41 21 693 27 15
Office: GR A0 444
EPFL › ENAC › IIE › CRYOS
Site web: https://cryos.epfl.ch
Formation
2003 – 2003 Inst. for Atmospheric and Climate Sciences, ETH Zurich
1999 – 1999 Inst. for Atmospheric and Climate Sciences, ETH Zurich
1995 – 1995 J.W.Goethe University, Frankfurt
[38] Assessment of thermal stabilization measures based on numerical simulations at a Swiss alpine permafrost site
The Cryosphere. 2025. DOI : 10.5194/tc-19-4277-2025.[37] Banner Cloud Formation at the Matterhorn: Measurements versus Large-Eddy Simulations
Journal of the Atmospheric Sciences. 2025. DOI : 10.1175/jas-d-24-0193.1.[36] The MatterHEX Experiment – Investigating Atmospheric Flow Patterns in Highly Complex Terrain Related to Banner Cloud Formation
Bulletin of the American Meteorological Society. 2025. DOI : 10.1175/bams-d-24-0108.1.[35] Influence of air flow features on alpine wind energy potential
Frontiers In Energy Research. 2024. DOI : 10.3389/fenrg.2024.1379863.[34] Using the Sensible Heat Flux Eddy Covariance-Based Exchange Coefficient to Calculate Latent Heat Flux from Moisture Mean Gradients Over Snow
Boundary-Layer Meteorology. 2024. DOI : 10.1007/s10546-024-00864-y.[33] Quantifying urban climate response to large-scale forcing modified by local boundary layer effects
Frontiers in Environmental Science. 2024. DOI : 10.3389/fenvs.2024.1438917.[32] Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow
Boundary-Layer Meteorology. 2023. DOI : 10.1007/s10546-021-00653-x.[31] Combining Weather Station Data and Short-Term LiDAR Deployment to Estimate Wind Energy Potential with Machine Learning: A Case Study from the Swiss Alps
Boundary Layer Meteorology. 2023. DOI : 10.1007/s10546-023-00808-y.[30] Observations and simulations of new snow density in the drifting snow-dominated environment of Antarctica
Journal Of Glaciology. 2022. DOI : 10.1017/jog.2022.102.[29] Future water temperature of rivers in Switzerland under climate change investigated with physics-based models
Hydrology and Earth System Sciences. 2022. DOI : 10.5194/hess-26-1063-2022.[28] Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow
Boundary-Layer Meteorology. 2022. DOI : 10.1007/s10546-021-00653-x.[27] Climate change scenarios at hourly time‐step over Switzerland from an enhanced temporal downscaling approach
International Journal of Climatology. 2021. DOI : 10.1002/joc.7032.[26] Changement climatique et température des rivières
Aqua & Gas. 2021.[25] Radar measurements of blowing snow off a mountain ridge
The Cryosphere. 2020. DOI : 10.5194/tc-14-1779-2020.[24] Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour
Hydrology and Earth System Sciences. 2020. DOI : 10.5194/hess-24-115-2020.[23] The European mountain cryosphere: a review of its current state, trends, and future challenges
The Cryosphere. 2018. DOI : 10.5194/tc-12-759-2018.[22] How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?
Boundary Layer Meteorology. 2017. DOI : 10.1007/s10546-017-0262-1.[21] Influence of slope-scale snowmelt on catchment response simulated with the Alpine3D model
Water Resources Research. 2017. DOI : 10.1002/2017WR021278.[20] StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction
Geoscientific Model Development. 2016. DOI : 10.5194/gmd-9-4491-2016.[19] Attenuation of wind-induced pressure perturbations in alpine snow
Journal of Glaciology. 2016. DOI : 10.1017/jog.2016.53.[18] Fliessgewässertemperatur - zwei Modellansätze für zukünftige Prognosen
Aqua & Gas. 2016.[17] Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain
Boundary-Layer Meteorology. 2016. DOI : 10.1007/s10546-015-0066-0.[16] Comparison of different numerical approaches to the 1D sea-ice thermodynamics problem
Ocean Modelling. 2015. DOI : 10.1016/j.ocemod.2014.12.006.[15] Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model
Hydrology and Earth System Sciences. 2015. DOI : 10.5194/hess-19-3727-2015.[14] Flow during the evening transition over steep Alpine slopes
Quarterly Journal of the Royal Meteorological Society. 2013. DOI : 10.1002/qj.1985.[13] Thermal diffusivity of seasonal snow determined from temperature profiles
Advances in Water Resources. 2013. DOI : 10.1016/j.advwatres.2012.06.011.[12] Carbon monoxide as a tracer of gas transport in snow and other natural porous media
Geophysical Research Letters. 2012. DOI : 10.1029/2011GL050247.[11] Evolution of superficial lake water temperature profile under diurnal radiative forcing
Water Resources Research. 2011. DOI : 10.1029/2011WR010529.[10] Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height
Atmospheric Measurement Techniques. 2011. DOI : 10.5194/amt-4-143-2011.[9] Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier
Journal of Fluid Mechanics. 2010. DOI : 10.1017/S0022112010004015.[8] Stream Temperature Response to Three Riparian Vegetation Scenarios by Use of a Distributed Temperature Validated Model
Environmental Science & Technology. 2010. DOI : 10.1021/es902654f.[7] Albedo effect on radiative errors in air temperature measurements
Water Resources Research. 2009. DOI : 10.1029/2008WR007600.[6] Estimation of wet surface evaporation from sensible heat flux measurements
Water Resources Research. 2009. DOI : 10.1029/2008WR007544.[5] Subgrid-Scale Dynamics of Water Vapour, Heat, and Momentum over a Lake
Boundary-Layer Meteorology. 2008. DOI : 10.1007/s10546-008-9287-9.[4] Spatial pattern and stability of the cold surface layer of Storglaciaren, Sweden
Journal of Glaciology. 2007. DOI : 10.3189/172756507781833974.[3] Distributed fiber-optic temperature sensing for hydrologic systems
Water Resources Research. 2006. DOI : 10.1029/2006WR005326.[2] Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes
Journal of Geophysical Research. 2005. DOI : 10.1029/2003JC002221.[1] A multilayer sigma-coordinate thermodynamic sea ice model: Validation against Surface Heat Budget of the Arctic Ocean (SHEBA)/Sea Ice Model Intercomparison Project Part 2 (SIMIP2) data
Journal of Geophysical Research. 2005. DOI : 10.1029/2004JC002328.Influence of air flow features on alpine wind energy potential
Frontiers In Energy Research. 2024-05-24. DOI : 10.3389/fenrg.2024.1379863.Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow (vol 182, pg 119, 2022)
Boundary-Layer Meteorology. 2023-05-20. DOI : 10.1007/s10546-023-00809-x.Combining Weather Station Data and Short-Term LiDAR Deployment to Estimate Wind Energy Potential with Machine Learning: A Case Study from the Swiss Alps
Boundary Layer Meteorology. 2023-05-11. DOI : 10.1007/s10546-023-00808-y.Correction to: Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow
Boundary-Layer Meteorology. 2023. DOI : 10.1007/s10546-023-00809-x.Observations and simulations of new snow density in the drifting snow-dominated environment of Antarctica
Journal Of Glaciology. 2022-12-14. DOI : 10.1017/jog.2022.102.Future water temperature of rivers in Switzerland under climate change investigated with physics-based models
Hydrology and Earth System Sciences. 2022-02-24. DOI : 10.5194/hess-26-1063-2022.Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow
Boundary-Layer Meteorology. 2022. DOI : 10.1007/s10546-021-00653-x.Climate change scenarios at hourly time‐step over Switzerland from an enhanced temporal downscaling approach
International Journal of Climatology. 2021-02-01. DOI : 10.1002/joc.7032.Changement climatique et température des rivières
Aqua & Gas. 2021.Radar measurements of blowing snow off a mountain ridge
The Cryosphere. 2020-06-03. DOI : 10.5194/tc-14-1779-2020.Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour
Hydrology and Earth System Sciences. 2020-01-10. DOI : 10.5194/hess-24-115-2020.Influence of slope-scale snowmelt on catchment response simulated with the Alpine3D model
Water Resources Research. 2017. DOI : 10.1002/2017WR021278.How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?
Boundary Layer Meteorology. 2017. DOI : 10.1007/s10546-017-0262-1.StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction
Geoscientific Model Development. 2016. DOI : 10.5194/gmd-9-4491-2016.Fliessgewässertemperatur - zwei Modellansätze für zukünftige Prognosen
Aqua & Gas. 2016.Attenuation of wind-induced pressure perturbations in alpine snow
Journal of Glaciology. 2016. DOI : 10.1017/jog.2016.53.Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain
Boundary-Layer Meteorology. 2016. DOI : 10.1007/s10546-015-0066-0.Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model
Hydrology and Earth System Sciences. 2015. DOI : 10.5194/hess-19-3727-2015.Comparison of different numerical approaches to the 1D sea-ice thermodynamics problem
Ocean Modelling. 2015. DOI : 10.1016/j.ocemod.2014.12.006.Flow during the evening transition over steep Alpine slopes
Quarterly Journal of the Royal Meteorological Society. 2013. DOI : 10.1002/qj.1985.Thermal diffusivity of seasonal snow determined from temperature profiles
Advances in Water Resources. 2013. DOI : 10.1016/j.advwatres.2012.06.011.Carbon monoxide as a tracer of gas transport in snow and other natural porous media
Geophysical Research Letters. 2012. DOI : 10.1029/2011GL050247.Evolution of superficial lake water temperature profile under diurnal radiative forcing
Water Resources Research. 2011. DOI : 10.1029/2011WR010529.Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height
Atmospheric Measurement Techniques. 2011. DOI : 10.5194/amt-4-143-2011.Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier
Journal of Fluid Mechanics. 2010. DOI : 10.1017/S0022112010004015.Stream Temperature Response to Three Riparian Vegetation Scenarios by Use of a Distributed Temperature Validated Model
Environmental Science & Technology. 2010. DOI : 10.1021/es902654f.Albedo effect on radiative errors in air temperature measurements
Water Resources Research. 2009. DOI : 10.1029/2008WR007600.Estimation of wet surface evaporation from sensible heat flux measurements
Water Resources Research. 2009. DOI : 10.1029/2008WR007544.Subgrid-Scale Dynamics of Water Vapour, Heat, and Momentum over a Lake
Boundary-Layer Meteorology. 2008. DOI : 10.1007/s10546-008-9287-9.Spatial pattern and stability of the cold surface layer of Storglaciaren, Sweden
Journal of Glaciology. 2007. DOI : 10.3189/172756507781833974.Distributed fiber-optic temperature sensing for hydrologic systems
Water Resources Research. 2006. DOI : 10.1029/2006WR005326.Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes
Journal of Geophysical Research. 2005. DOI : 10.1029/2003JC002221.A multilayer sigma-coordinate thermodynamic sea ice model: Validation against Surface Heat Budget of the Arctic Ocean (SHEBA)/Sea Ice Model Intercomparison Project Part 2 (SIMIP2) data
Journal of Geophysical Research. 2005. DOI : 10.1029/2004JC002328.Enseignement et PhD
Current Phd
Brandon Van Schaik, Elizaveta Sharaborova
Past Phd As Codirector
Aurélien Gallice, Tristan Jonas Brauchli, Adrien Michel
Courses
Physics and chemistry of the atmosphere
ENV-320
Ce cours est une introduction aux phénomènes physiques et chimiques gouvernant la dynamique atmosphérique à petite et grande échelle. Le cours est structuré afin de donner une compréhension en profondeur de notre atmosphère et du système climatique.
Physics and hydrology of snow
ENV-525
Ce cours aborde les principes de la physique et de l'hydrologie de la neige, les interactions neige-atmosphère, et de la modélisation. Le cours transmet une compréhension des processus physiques de la neige et ses interfaces (air et sol), y compris techniques de terrain, laboratoire et modélisation.