Henry Markram

EPFL SV BMI LNMC
AAB 1 10 (Bâtiment AAB)
Station 19
CH-1015 Lausanne

Henry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80’s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps. He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band. He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2+ into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2+ channel. He developed a model to show how different types of electrical activities can divert Ca2+ to activate different intracellular targets depending on the speed of Ca2+ influx – an insight that helps explain how Ca2+ acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction. He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the “tabula rasa principle” which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing. In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markram’s lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring. At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the “blue-print” of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBM’s most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10’000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markram’s lab has now set the agenda towards whole brain and molecular modeling. With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the “Intense World Syndrome” proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism. Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.

Awards

Bell Labs Shannon Visionary Award

2016

Infoscience

A Detailed Model for Understanding the Human Neocortex

N. B. ZulaicaL. KanariV. SoodP. RaiA. Arnaudon  et al.

2026

An interactive 3D atlas of gene expression in the mouse brain

H. CareyS. PilusoI. BjerkeX. GuiS. Yates  et al.

2026

Modeling and simulation of neocortical micro- and mesocircuitry (Part I, anatomy)

M. W. ReimannS. Bolaños-PuchetJ.-D. CourcolD. Egas SantanderA. Arnaudon  et al.

eLife. 2026. DOI : 10.7554/elife.99688.3.

Modeling and simulation of neocortical micro- and mesocircuitry (Part II, Physiology and experimentation)

J. B. IsbisterA. EckerC. PokornyS. Bolaños-PuchetD. Egas Santander  et al.

eLife. 2026. DOI : 10.7554/elife.99693.3.

Higher-order interactions in neuronal function: From genes to ionic currents in biophysical models

M. RevaA. ArnaudonM. ZbiliA. MakkehH. Markram  et al.

Proceedings of the National Academy of Sciences. 2025. DOI : 10.1073/pnas.2500048122.

N-glycosylation modulates the inactivation kinetics of the Kv3.4 ion channel

R. RanjanE. LogetteM. HerzogV. BuchillierE. Scantamburlo  et al.

iScience. 2025. DOI : 10.1016/j.isci.2025.113409.

Of mice and men: Dendritic architecture differentiates human from mouse neuronal networks

L. KanariY. ShiA. ArnaudonN. Barros-ZulaicaR. Benavides-Piccione  et al.

iScience. 2025. DOI : 10.1016/j.isci.2025.112928.

A multiscale electro-metabolic model of a rat neocortical circuit reveals the impact of ageing on central cortical layers

S. FarinaA. CattabianiD. MandgeP. ShichkovaJ. B. Isbister  et al.

PLOS Computational Biology. 2025. DOI : 10.1371/journal.pcbi.1013070.

Seizure and redox rescue in a model of glucose transport deficiency

J. S. CogganP. ShichkovaH. MarkramD. Keller

PLoS Computational Biology. 2025. DOI : 10.1371/journal.pcbi.1012959.

Breakdown and repair of metabolism in the aging brain

P. ShichkovaJ. S. CogganL. KanariE. BociC. Favreau  et al.

Frontiers in Science. 2025. DOI : 10.3389/fsci.2025.1441297.

Computational Generation of Long-range Axonal Morphologies

A. BerchetR. PetkantchinH. MarkramL. Kanari

NEUROINFORMATICS. 2025. DOI : 10.1007/s12021-024-09696-0.

Principles of inter-areal interactions in cortical sensory processing

S. Bolaños Puchet / H. MarkramM. Reimann (Dir.)

Lausanne, EPFL, 2025. DOI : 10.5075/epfl-thesis-10154.

Cell density quantification of high resolution Nissl images of the juvenile rat brain

J. MeystreJ. JacquemierO. BurriC. ZsolnaiN. Frank  et al.

Frontiers In Neuroanatomy. 2024. DOI : 10.3389/fnana.2024.1463632.

Modeling and Simulation of Neocortical Micro- and Mesocircuitry. Part I: Anatomy

M. ReimannS. Bolaños PuchetJ.-D. CourcolD. Egas SantanderA. Arnaudon  et al.

eLife. 2024. DOI : 10.7554/eLife.99688.2.

Modeling of blood flow dynamics in the rat somatosensory cortex

S. BattiniN. CantaruttiC. KotsalosY. RousselA. Cattabiani  et al.

2024

Sex dimorphism in rodent brain responses to ketogenic diets: A comparative study

C. LorinH. MarkramM. GarciaG. O. DiaceriE. Logette  et al.

2024

An extended and improved CCFv3 annotation and Nissl atlas of the entire mouse brain

S. PilusoC. VerasztóH. CareyE. DelattreT. L’Yvonnet  et al.

2024

Modeling and simulation of neocortical micro- and mesocircuitry. Part II: Physiology and experimentation

J. B. IsbisterA. EckerC. PokornyS. Bolaños PuchetD. Egas Santander  et al.

Elife. 2024. DOI : 10.7554/eLife.99693.1.sa2.

Simplification of spiking neural network models

H. MarkramW. GerstnerM.-O. GewaltigC. A. RossertE. B. Muller  et al.

US2024370713 . 2024.

Community-based reconstruction and simulation of a full-scale model of region CA1 of rat hippocampus.

A. RomaniA. AntoniettiD. BellaJ. M. BuddE. Giacalone  et al.

PLOS Biology. 2024. DOI : 10.1371/journal.pbio.3002861.

Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes

P. ShichkovaJ. CogganH. MarkramD. Keller

Cells. 2024. DOI : 10.3390/cells13201714.

Generating brain-wide connectome using synthetic axonal morphologies

R. PetkantchinA. BerchetH. PengH. MarkramL. Kanari

2024

Deep learning for classifying neuronal morphologies: combining topological data analysis and graph neural networks

L. KanariS. SchmidtF. CasalegnoE. DelattreJ. Banjac  et al.

2024

BlueCelluLab: Biologically Detailed Neural Network Experimentation API

M. A. TuncelM. GevaertW. Van GeitB. Torben-NielsenD. Mandge  et al.

Journal of Open Source Software. 2024. DOI : 10.21105/joss.07026.

Structural and molecular characterization of astrocyte and vasculature connectivity in the mouse hippocampus and cortex

C. LorinR. GuietN. ChiaruttiniG. AmbrosiniE. Boci  et al.

Glia. 2024. DOI : 10.1002/glia.24594.

Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala

M. AbatisR. PerinR. NiuE. van den BurgC. Hegoburu  et al.

Nature Neuroscience. 2024. DOI : 10.1038/s41593-024-01676-6.

A multi-modal fitting approach to construct single-neuron models with patch clamp and high-density microelectrode arrays

A. P. BuccinoT. DamartJ. BartramD. MandgeX. Xue  et al.

Neural Computation. 2024. DOI : https://doi.org/10.1162/neco_a_01672.

Of mice and men: Increased dendritic complexity gives rise to unique human networks

L. KanariY. ShiA. ArnaudonN. Barros ZulaicaR. Benavides-Piccione  et al.

2024

Coupled Electromagnetic-Electrophysiological Modeling of Neural Circuits

J. Tharayil / H. MarkramE. Neufeld (Dir.)

Lausanne, EPFL, 2024. DOI : 10.5075/epfl-thesis-11176.

A universal workflow for creation, validation and generalization of detailed neuronal models

M. RevaC. RössertA. ArnaudonT. DamartD. Mandge  et al.

Patterns. 2023. DOI : 10.1016/j.patter.2023.100855.

Controlling morpho-electrophysiological variability of neurons with detailed models

A. ArnaudonM. RevaM. M. ZbiliH. MarkramW. Van Geit  et al.

Iscience. 2023. DOI : 10.1016/j.isci.2023.108222.

Cell-type-specific densities in mouse somatosensory cortex derived from scRNA-seq and in situ RNA hybridization

D. KellerC. VerasztoH. Markram

Frontiers In Neuroanatomy. 2023. DOI : 10.3389/fnana.2023.1118170.

A theory of memory consolidation and synaptic pruning in cortical circuits

G. Iatropoulos / H. MarkramW. Gerstner (Dir.)

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-10094.

Breakdown and rejuvenation of aging brain energy metabolism

P. ShichkovaJ. S. CogganE. BociC. P. H. FavreauS. M. Antonel  et al.

2023

Digital reconstruction of the mammalian spinal cord: from anatomical reference volume to cell type atlas of the mouse spinal cord

I. Kuras / H. MarkramM.-O. Gewaltig (Dir.)

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-9198.

Blue Brain Nexus: An open, secure, scalable system for knowledge graph management and data-driven science

M. F. SyB. RomanS. KerrienD. Montero MendezH. Genet  et al.

Semantic Web. 2023. DOI : 10.3233/SW-222974.

Mapping of morpho-electric features to molecular identity of cortical inhibitory neurons

Y. RousselC. VerasztoD. RodarieT. DamartM. Reimann  et al.

Plos Computational Biology. 2023. DOI : 10.1371/journal.pcbi.1010058.

Principles of Network Plasticity in Neocortical Microcircuits

A. Ecker / H. MarkramM. Reimann (Dir.)

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-10137.

Thalamic control of sensory processing and spindles in a biophysical somatosensory thalamoreticular circuit model of wakefulness and sleep

E. IavaroneJ. SimkoY. ShiM. L. BertschyM. García-Amado  et al.

Cell Reports. 2023. DOI : 10.1016/j.celrep.2023.112200.

Ultraliser: a framework for creating multiscale, high-fidelity and geometrically realistic 3D models for in silico neuroscience

M. AbdellahJ. J. G. CanteroN. R. GuerreroA. FoniJ. S. Coggan  et al.

Briefings In Bioinformatics. 2023. DOI : 10.1093/bib/bbac491.

Simulating Temporal Interference Stimulation

J. TharayilM. ReimannE. NeufeldF. SchurmannH. Markram

2023. p. S66 - S66.

Molecular reconstruction and simulation of the Neuron-Glia-Vasculature system

P. Shichkova / H. MarkramD. Keller (Dir.)

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-9336.

Overexpression of UCP4 in astrocytic mitochondria prevents multilevel dysfunctions in a mouse model of Alzheimer's disease

N. RosenbergM. RevaF. BindaL. RestivoP. Depierre  et al.

Glia. 2022. DOI : 10.1002/glia.24317.

A method to estimate the cellular composition of the mouse brain from heterogeneous datasets

D. RodarieC. VerasztoY. RousselM. ReimannD. Keller  et al.

Plos Computational Biology. 2022. DOI : 10.1371/journal.pcbi.1010739.

Neuromodulatory organization in the developing rat somatosensory cortex

C. ColangeloA. MuñozA. AntoniettiA. Antón-FernándezA. Romani  et al.

2022

Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning

B. DenizdurduranH. MarkramM.-O. Gewaltig

Biological Cybernetics. 2022. DOI : 10.1007/s00422-022-00940-x.

Strong and reliable synaptic communication between pyramidal neurons in adult human cerebral cortex

S. HuntY. LeibnerE. J. MertensN. Barros-ZulaicaL. Kanari  et al.

Cerebral Cortex. 2022. DOI : 10.1093/cercor/bhac246.

A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex

G. ChindemiM. AbdellahO. AmsalemR. Benavides-PiccioneV. Delattre  et al.

Nature Communications. 2022. DOI : 10.1038/s41467-022-30214-w.

Representing stimulus information in an energy metabolism pathway

J. S. CogganD. KellerH. MarkramF. SchurmannP. J. Magistretti

Journal Of Theoretical Biology. 2022. DOI : 10.1016/j.jtbi.2022.111090.

Computational synthesis of cortical dendritic morphologies

L. KanariH. DictusA. ChalimourdaA. ArnaudonW. Van Geit  et al.

Cell Reports. 2022. DOI : 10.1016/j.celrep.2022.110586.

Reconstruction of the Hippocampus

A. RomaniF. SchürmannH. MarkramM. Migliore

Computational Modelling of the Brain: Modelling Approaches to Cells, Circuits and Networks; Springer, 2022.

Data-driven whole mouse brain modeling for multi-scale simulations

D. B. M. Rodarie / H. MarkramM.-O. Gewaltig (Dir.)

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-8715.

Neuromodulation of neocortical microcircuitry: a multi-scale framework to model the effects of cholinergic release

C. Colangelo / H. MarkramS. Ramaswamy (Dir.)

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-8866.

Digital Reconstruction of the Neuro-Glia-Vascular Architecture

E. ZisisD. KellerL. KanariA. ArnaudonM. Gevaert  et al.

Cerebral Cortex. 2021. DOI : 10.1093/cercor/bhab254.

Computational modelling of a mouse layer 5 pyramidal neuron using genetic ion channels

D. MandgeY. RousselS. van DorpT. DamartD. Keller  et al.

2021. 30th Annual Computational Neuroscience Meeting, [virtual event], 2021-07-03 - 2021-07-07. p. S123 - S123.

Building somatosensory cortex neuron models using a workflow for the creation, validation and generalization of biophysically detailed cell models

M. RevaC. RoessertD. MandgeA. ArnaudonT. Damart  et al.

2021. 30th Annual Computational Neuroscience Meeting, [virtual event], 2021-07-03 - 2021-07-07. p. S122 - S123.

Extracellular stimulation and Local Field Potential recording in a L5 PC model with full axonal arbor

J. TharayilM. ZbiliA. ArnaudonW. Van GeitE. Neufeld  et al.

2021. 30th Annual Computational Neuroscience Meeting, [virtual event], 2021-07-03 - 2021-07-07. p. S123 - S124.

A Standardized Brain Molecular Atlas: A Resource for Systems Modeling and Simulation

P. ShichkovaJ. S. CogganH. MarkramD. Keller

Frontiers In Molecular Neuroscience. 2021. DOI : 10.3389/fnmol.2021.604559.

Morphology, physiology and synaptic connectivity of local interneurons in the mouse somatosensory thalamus

J. SimkoH. Markram

Journal Of Physiology. 2021. DOI : 10.1113/JP281711.

The Role of Hub Neurons in Modulating Cortical Dynamics

E. GalO. AmsalemA. SchindelM. LondonF. Schuermann  et al.

Frontiers In Neural Circuits. 2021. DOI : 10.3389/fncir.2021.718270.

Supervised Learning With Perceptual Similarity for Multimodal Gene Expression Registration of a Mouse Brain Atlas

J. KreplF. CasalegnoE. DelattreC. EroH. Lu  et al.

Frontiers In Neuroinformatics. 2021. DOI : 10.3389/fninf.2021.691918.

A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19

E. LogetteC. LorinC. FavreauE. OshurkoJ. S. Coggan  et al.

Frontiers In Public Health. 2021. DOI : 10.3389/fpubh.2021.695139.

Metaball skinning of synthetic astroglial morphologies into realistic mesh models for visual analytics and in silico simulations

M. AbdellahA. FoniE. ZisisN. R. GuerreroS. Lapere  et al.

Bioinformatics. 2021. DOI : 10.1093/bioinformatics/btab280.

In silico voltage-sensitive dye imaging reveals the emergent dynamics of cortical populations

T. H. NewtonM. W. ReimannM. AbdellahG. ChevtchenkoE. B. Muller  et al.

Nature Communications. 2021. DOI : 10.1038/s41467-021-23901-7.

ARC: An Open Web-Platform for Request/Supply Matching for a Prioritized and Controlled COVID-19 Response

J.-D. CourcolC. F. InvernizziZ. C. LandryM. MinisiniD. A. Baumgartner  et al.

Frontiers In Public Health. 2021. DOI : 10.3389/fpubh.2021.607677.

Structural architecture of the Neuronal-Glial-Vascular system

E. Zisis / H. MarkramD. Keller (Dir.)

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-7480.

Synthesis of branching morphologies

L. KanariK. P. BellwaldH. Markram

US2022414436 ; EP4032103 ; CN114787939 ; KR20220084391 ; WO2021078588 . 2021.

Thalamic microcircuitry: neurons, synapses, and circuit motifs in receptive field structure and sensory processing

J. Yi / H. MarkramS. L. Hill (Dir.)

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-7614.

Interactive visualization and analysis of morphological skeletons of brain vasculature networks with VessMorphoVis

M. AbdellahN. R. GuerreroS. LapereJ. S. CogganD. Keller  et al.

Bioinformatics. 2020. DOI : 10.1093/bioinformatics/btaa461.

Excitation states of metabolic networks predict dose-response fingerprinting and ligand pulse phase signalling

J. S. CogganD. KellerH. MarkramF. SchurmannP. J. Magistretti

Journal Of Theoretical Biology. 2020. DOI : 10.1016/j.jtbi.2019.110123.

A Kinetic Map of the Homomeric Voltage-gated Potassium Channel (Kv) Family

R. RanjanE. LogetteM. MaraniM. HerzogV. Tache  et al.

2020. 64th Annual Meeting of the Biophysical-Society, San Diego, CA, Feb 15-19, 2020. p. 108A - 108A. DOI : 10.1016/j.bpj.2019.11.739.

Impact of higher order network structure on emergent cortical activity

M. NolteE. GalH. MarkramM. W. Reimann

Network Neuroscience. 2020. DOI : 10.1162/netn_a_00124.

Data driven building of realistic neuron model using IBEA and CMA evolution strategies

T. P. L. DamartW. Van GeitH. Markram

2020. GECCO '20: Genetic and Evolutionary Computation Conference, Cancún, Mexico, July 8 - 12, 2020. p. 35 - 36. DOI : 10.1145/3377929.3398161.

Neuron Geometry Underlies Universal Network Features in Cortical Microcircuits

E. GalR. PerinH. MarkramM. LondonI. Segev

2020

Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in the Neocortex

N. Barros-ZulaicaJ. RahmonG. ChindemiR. PerinH. Markram  et al.

Frontiers In Synaptic Neuroscience. 2019. DOI : 10.3389/fnsyn.2019.00029.

A null model of the mouse whole-neocortex micro-connectome

M. W. ReimannM. GeyaertY. ShiH. LuH. Markram  et al.

Nature Communications. 2019. DOI : 10.1038/s41467-019-11630-x.

Caries Detection with Near-Infrared Transillumination Using Deep Learning

F. CasalegnoT. NewtonR. DaherM. AbdelazizA. Lodi-Rizzini  et al.

Journal of Dental Research. 2019. DOI : 10.1177/0022034519871884.

Cortical reliability amid noise and chaos

M. NolteM. W. ReimannJ. G. KingH. MarkramE. B. Muller

Nature Communications. 2019. DOI : 10.1038/s41467-019-11633-8.

A Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (Kv) Family

R. RanjanE. LogetteM. MaraniM. HerzogV. Tache  et al.

Frontiers in Cellular Neuroscience. 2019. DOI : 10.3389/fncel.2019.00358.

A Derived Positional Mapping of Inhibitory Subtypes in the Somatosensory Cortex

D. KellerJ. MeystreR. V. VeettilO. BurriR. Guiet  et al.

Frontiers In Neuroanatomy. 2019. DOI : 10.3389/fnana.2019.00078.

Experimentally-constrained biophysical models of tonic and burst firing modes in thalamocortical neurons

E. IavaroneJ. YiY. ShiB.-J. ZandtC. O'Reilly  et al.

PLoS Computational Biology. 2019. DOI : 10.1371/journal.pcbi.1006753.

A Brief History of Simulation Neuroscience

X. FanH. Markram

Frontiers In Neuroinformatics. 2019. DOI : 10.3389/fninf.2019.00032.

Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex

C. ColangeloP. ShichkovaD. KellerH. MarkramS. Ramaswamy

Frontiers In Neural Circuits. 2019. DOI : 10.3389/fncir.2019.00024.

Objective Morphological Classification of Neocortical Pyramidal Cells

L. KanariS. RamaswamyY. ShiS. MorandJ. Meystre  et al.

Cerebral Cortex. 2019. DOI : 10.1093/cercor/bhy339.

Individual differences in sensory sensitivity: Further lessons from an Autism model

M. R. FavreH. MarkramK. Markram

Cognitive Neuroscience. 2019. DOI : 10.1080/17588928.2019.1592143.

Corrigendum: A Cell Atlas for the Mouse Brain

C. EroM.-O. GewaltigD. KellerH. Markram

Frontiers In Neuroinformatics. 2019. DOI : 10.3389/fninf.2019.00007.

In Silico Voltage-Sensitive Dye Imaging: A Model-Based Approach for Bridging Scales of Cortical Activity

T. H. Newton / H. Markram (Dir.)

Lausanne, EPFL, 2019. DOI : 10.5075/epfl-thesis-9848.

Untangling emergent cortical dynamics: neurons from networks, noise from chaos

M. C. Nolte / H. MarkramE. B. Muller (Dir.)

Lausanne, EPFL, 2019. DOI : 10.5075/epfl-thesis-9616.

Reverse engineering the motor control system

B. Denizdurduran / H. MarkramM.-O. Gewaltig (Dir.)

Lausanne, EPFL, 2019. DOI : 10.5075/epfl-thesis-9599.

A Cell Atlas for the Mouse Brain

C. EroeM.-O. GewaltigD. KellerH. Markram

Frontiers In Neuroinformatics. 2018. DOI : 10.3389/fninf.2018.00084.

Cell Densities in the Mouse Brain: A Systematic Review

D. KellerC. EroH. Markram

Frontiers In Neuroanatomy. 2018. DOI : 10.3389/fnana.2018.00083.

Data-Driven Modeling of Cholinergic Modulation of Neural Microcircuits: Bridging Neurons, Synapses and Network Activity

S. RamaswamyC. ColangeloH. Markram

Frontiers In Neural Circuits. 2018. DOI : 10.3389/fncir.2018.00077.

A Process for Digitizing and Simulating Biologically Realistic Oligocellular Networks Demonstrated for the Neuro-Glio-Vascular Ensemble

J. S. CogganC. CaliD. KellerM. AgusD. Boges  et al.

Frontiers In Neuroscience. 2018. DOI : 10.3389/fnins.2018.00664.

The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow

R. MiglioreC. A. LupascuL. L. BolognaA. RomaniJ.-D. Courcol  et al.

PLoS Computational Biology. 2018. DOI : 10.1371/journal.pcbi.1006423.

Microcircuitry of the neocortex

S. RamaswamyE. B. MullerM. ReimannH. Markram

Handbook of Brain Microcircuits; Oxford University Press, 2018. p. 35 - 46.

Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate

J. S. CogganD. KellerC. CalìH. LehväslaihoH. Markram  et al.

PLoS Computational Biology. 2018. DOI : 10.1371/journal.pcbi.1006392.

Reconstruction and simulation of neocortical microcircuitry

H. MarkramE. B. MullerS. L. HillF. Schuermann

US11817220 ; US2018101660 . 2018.

Towards a unified understanding of synaptic plasticity : parsimonious modeling and simulation of the glutamatergic synapse life-cycle

G. Chindemi / H. MarkramE. B. Muller (Dir.)

Lausanne, EPFL, 2018. DOI : 10.5075/epfl-thesis-8186.

Generating and identifying functional subnetworks within structural networks

M. W. ReimannM. C. NolteH. MarkramK. P. Hess BellwaldR. Levi

US2023297808 ; US11615285 ; US2018197069 . 2018.

Neuronal morphologies: the shapes of thoughts

L. Kanari / H. MarkramJ. C. Shillcock (Dir.)

Lausanne, EPFL, 2018. DOI : 10.5075/epfl-thesis-8255.

Data-driven reconstruction of a point neuron mouse brain

C. Erö / H. MarkramM.-O. Gewaltig (Dir.)

Lausanne, EPFL, 2018. DOI : 10.5075/epfl-thesis-8962.

Simplification of neural network models

H. MarkramW. GerstnerM.-O. GewaltigC. RössertE. B. Muller  et al.

US11983620 ; US2022230052 ; US11301750 ; US2018285716 . 2018.

Reconstruction and visualization of large-scale volumetric models of neocortical circuits for physically-plausible in silico optical studies

M. AbdellahJ. HernandoN. AntilleS. EilemannH. Markram  et al.

Bmc Bioinformatics. 2017. DOI : 10.1186/s12859-017-1788-4.

Morphological Diversity Strongly Constrains Synaptic Connectivity and Plasticity

M. W. ReimannA.-L. HorlemannS. RamaswamyE. B. MullerH. Markram

Cerebral Cortex. 2017. DOI : 10.1093/cercor/bhx150.

Using the Green's function to simplify and understand dendrites

W. A. M. Wybo / H. MarkramM.-O. Gewaltig (Dir.)

Lausanne, EPFL, 2017. DOI : 10.5075/epfl-thesis-7869.

Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function

M. W. ReimannM. NolteM. ScolamieroK. TurnerR. Perin  et al.

Frontiers In Computational Neuroscience. 2017. DOI : 10.3389/fncom.2017.00048.

In Silico Brain Imaging Physically-plausible Methods for Visualizing Neocortical Microcircuitry

M. Abdellah / H. MarkramF. Schürmann (Dir.)

Lausanne, EPFL, 2017. DOI : 10.5075/epfl-thesis-8161.

Rich cell-type-specific network topology in neocortical microcircuitry

E. GalM. LondonA. GlobersonS. RamaswamyM. W. Reimann  et al.

Nature Neuroscience. 2017. DOI : 10.1038/nn.4576.

Modeling the metabolic response of astrocytes to neuronal activity

J. CogganD. KellerC. CalH. LehvaslaihoF. Schurmann  et al.

2017. 13th European Meeting on Glial Cells in Health and Disease, Edinburgh, SCOTLAND, JUL 08-11, 2017. p. E280 - E280.

Bio-physically plausible visualization of highly scattering fluorescent neocortical models for in silico experimentation

M. AbdellahA. BilgiliS. EilemannJ. ShillcockH. Markram  et al.

Bmc Bioinformatics. 2017. DOI : 10.1186/s12859-016-1444-4.

A Physically Plausible Model for Rendering Highly Scattering Fluorescent Participating Media

M. AbdellahA. BilgiliS. EilemannH. MarkramF. Schürmann

2017

From Neuron Biophysics to Orientation Selectivity in Electrically Coupled Networks of Neocortical L2/3 Large Basket Cells

O. AmsalemW. Van GeitE. MullerH. MarkramI. Segev

Cerebral Cortex. 2016. DOI : 10.1093/cercor/bhw166.

Automated point-neuron simplification of data-driven microcircuit models

C. RössertC. PozzoriniG. ChindemiA. P. DavisonC. Eroe  et al.

2016

Tight Coupling of Astrocyte pH Dynamics to Epileptiform Activity Revealed by Genetically Encoded pH Sensors

J. V. RaimondoH. TomesA. IrkleL. KayL. Kellaway  et al.

The Journal of neuroscience. 2016. DOI : 10.1523/Jneurosci.0664-16.2016.

Physically-based Rendering of Highly Scattering Fluorescent Solutions Using Path Tracing

M. AbdellahA. BilgiliS. EilemannH. MarkramF. Schurmann

2016. The 37TH Annual Conference of the European Association for Computer Graphics - EUROGRAPHICS 2016, Lisbon, Portugal, 2016-05-09 - 2016-05-13. p. 17 - 18. DOI : 10.2312/egp.20161045.

Agile in-litero experiments : how can semi-automated information extraction from neuroscientific literature help neuroscience model building?

R. L. Richardet / H. MarkramJ.-C. Chappelier (Dir.)

Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-6809.

An algorithm to predict the connectome of neural microcircuits

M. W. ReimannJ. G. KingE. B. MullerS. RamaswamyH. Markram

Frontiers In Computational Neuroscience. 2015. DOI : 10.3389/fncom.2015.00120.

The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex

S. RamaswamyJ.-D. CourcolM. AbdellahS. R. AdaszewskiN. Antille  et al.

Frontiers In Neural Circuits. 2015. DOI : 10.3389/fncir.2015.00044.

An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse

D. KellerN. BabaiO. KochubeyY. HanH. Markram  et al.

PLoS Computational Biology. 2015. DOI : 10.1371/journal.pcbi.1004253.

Large Volume Imaging of Rodent Brain Anatomy with Emphasis on Selective Plane Illumination Microscopy

J. P. Ghobril / H. MarkramF. S. Pavone (Dir.)

Lausanne, EPFL, 2015. DOI : 10.5075/epfl-thesis-6533.

Network-timing-dependent plasticity

V. DelattreD. KellerM. PerichH. MarkramE. B. Muller

Frontiers in cellular neuroscience. 2015. DOI : 10.3389/fncel.2015.00220.

Structural to functional synaptic conversion

M. ReimannH. MarkramF. SchürmannE. B. MullerS. Hill  et al.

US9165244 ; US2014108315 . 2015.

Anti-Obesity and Anti-Hyperglycemic Effects of Cinnamaldehyde via altered Ghrelin Secretion and Functional impact on Food Intake and Gastric Emptying

S. CamachoS. MichligC. De Senarclens-BezenconJ. MeylanJ. Meystre  et al.

Scientific Reports. 2015. DOI : 10.1038/srep07919.

Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron

S. RamaswamyH. Markram

Frontiers In Cellular Neuroscience. 2015. DOI : 10.3389/fncel.2015.00233.

Predictable enriched environment prevents development of hyper-emotionality in the VPA rat model of autism

M. R. FavreD. La MendolaJ. MeystreD. ChristodoulouM. Cochrane  et al.

Frontiers in Neuroscience. 2015. DOI : 10.3389/fnins.2015.00127.

Physically-based in silico light sheet microscopy for visualizing fluorescent brain models

M. AbdellahA. BilgiliS. EilemannH. MarkramF. Schürmann

BMC bioinformatics. 2015. DOI : 10.1186/1471-2105-16-S11-S8.

Cell-type- and activity-dependent extracellular correlates of intracellular spiking

C. AnastassiouR. d. C. PerinG. BuzsakiH. MarkramC. Koch

Journal of Neurophysiology. 2015. DOI : 10.1152/jn.00628.2014.

A versatile clearing agent for multi-modal brain imaging

I. CostantiniJ.-P. GhobrilA. P. Di GiovannaA. L. A. MascaroL. Silvestri  et al.

Scientific Reports. 2015. DOI : 10.1038/srep09808.

Reconstruction and Simulation of Neocortical Microcircuitry

H. MarkramE. MullerS. RamaswamyM. W. ReimannM. Abdellah  et al.

Cell. 2015. DOI : 10.1016/j.cell.2015.09.029.

The future of human cerebral cartography: a novel approach

R. FrackowiakH. Markram

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2015. DOI : 10.1098/rstb.2014.0171.

Single-cell RT-PCR, a technique to decipher the electrical, anatomical, and genetic determinants of neuronal diversity

M. Toledo-RodriguezH. Markram

Patch-Clamp Methods and Protocols; Springer, 2014. p. 143 - 158.

The In-Silico Neocortical Microcircuit : From Structure to Dynamics

M. Reimann / H. MarkramS. Hill (Dir.)

Lausanne, EPFL, 2014. DOI : 10.5075/epfl-thesis-6168.

Distributor of neurons in a neocortical column

G. KhazenH. MarkramF. SchürmannM. Telefont

US2014107992 . 2014.

Visualizing the similarity and pedigree of NEURON ion channel models available on ModelDB

W. F. PodlaskiA. SeeholzerR. RajnishT. Vogels

COSYNE 2014, Salt Lake City & Snowbird, Utah, USA, February 27 - March 4, 2014.

Synaptic and cellular organization of layer 1 of the developing rat somatosensory cortex

S. MuralidharY. WangH. Markram

Frontiers In Neuroanatomy. 2014. DOI : 10.3389/fnana.2013.00052.

The death of Cajal and the end of scientific romanticism and individualism

J. DefelipeE. GarridoH. Markram

Trends In Neurosciences. 2014. DOI : 10.1016/j.tins.2014.08.002.

OCTOPUS: Efficient Query Execution on Dynamic Mesh Datasets

F. TauheedT. HeinisF. SchürmannH. MarkramA. Ailamaki

2014. 30st International Conference on Data Engineering (ICDE '14), Chicago, USA, April, 2014.

Scalable Exploration of Spatial Data in Large-Scale Scientific Simulations

F. Tauheed / A. AilamakiH. Markram (Dir.)

Lausanne, EPFL, 2014. DOI : 10.5075/epfl-thesis-6125.

Dampened neural activity and abolition of epileptic-like activity in cortical slices by active ingredients of spices

M. PezzoliA. ElhamdaniS. CamachoJ. MeystreS. M. Gonzalez  et al.

Scientific Reports. 2014. DOI : 10.1038/srep06825.

Matched Pre- and Post-Synaptic Changes Underlie Synaptic Plasticity over Long Time Scales

A. LoebelJ.-V. Le BeM. J. E. RichardsonH. MarkramA. V. M. Herz

The Journal of neuroscience. 2013. DOI : 10.1523/Jneurosci.3740-12.2013.

One minute with ... Henry Markram

J. GriggsH. Markram

New Scientist. 2013.

Network Activity and Plasticity

V. Delattre / H. Markram (Dir.)

Lausanne, EPFL, 2013. DOI : 10.5075/epfl-thesis-5901.

Hyper-emotional neurophysiology in a rat model of autism

M. R. Favre / H. MarkramK. Markram (Dir.)

Lausanne, EPFL, 2013. DOI : 10.5075/epfl-thesis-5996.

A Hierarchical Structure of Cortical Interneuron Electrical Diversity Revealed by Automated Statistical Analysis

S. DruckmannS. HillF. SchuermannH. MarkramI. Segev

Cerebral Cortex. 2013. DOI : 10.1093/cercor/bhs290.

New insights into the classification and nomenclature of cortical GABAergic interneurons

J. DefelipeP. L. Lopez-CruzR. Benavides-PiccioneC. BielzaP. Larranaga  et al.

Nature Reviews Neuroscience. 2013. DOI : 10.1038/nrn3444.

Nlgn4 knockout induces network hypo-excitability in juvenile mouse somatosensory cortex in vitro

V. DelattreD. La MendolaJ. MeystreH. MarkramK. Markram

Scientific Reports. 2013. DOI : 10.1038/srep02897.

Neuroscience thinks big (and collaboratively)

E. R. KandelH. MarkramP. M. MatthewsR. YusteC. Koch

Nature Reviews Neuroscience. 2013. DOI : 10.1038/nrn3578.

Synaptic and Cellular Organization of Layer 1 of the Developing Rat Somatosensory Cortex

S. Muralidhar / H. Markram (Dir.)

Lausanne, EPFL, 2013. DOI : 10.5075/epfl-thesis-5902.

Seven challenges for neuroscience

H. Markram

Functional neurology. 2013. DOI : 10.11138/FNeur/2013.28.3.145.

Preserving axosomatic spiking features despite diverse dendritic morphology

E. HayF. SchuermannH. MarkramI. Segev

Journal Of Neurophysiology. 2013. DOI : 10.1152/jn.00048.2013.

A Biophysically Detailed Model of Neocortical Local Field Potentials Predicts the Critical Role of Active Membrane Currents

M. W. ReimannC. A. AnastassiouR. PerinS. L. HillH. Markram  et al.

Neuron. 2013. DOI : 10.1016/j.neuron.2013.05.023.

A computer-assisted multi-electrode patch-clamp system

R. PerinH. Markram

Journal of visualized experiments : JoVE. 2013. DOI : 10.3791/50630.

General developmental health in the VPA-rat model of autism

M. R. FavreT. R. BarkatD. LamendolaG. KhazenH. Markram  et al.

Frontiers In Behavioral Neuroscience. 2013. DOI : 10.3389/fnbeh.2013.00088.

Computing the size and number of neuronal clusters in local circuits

R. PerinM. TelefontH. Markram

Frontiers In Neuroanatomy. 2013. DOI : 10.3389/fnana.2013.00001.

Correction: Effective Stimuli for Constructing Reliable Neuron Models

S. DruckmannT. K. BergerF. SchuermannS. HillH. Markram  et al.

PLoS Computational Biology. 2013. DOI : 10.1371/annotation/c002fbe1-712c-4608-9747-f1185f0b7cf4.

The neocortical column

J. DeFelipeH. MarkramK. S. Rockland

Frontiers In Neuroanatomy. 2012. DOI : 10.3389/fnana.2012.00022.

Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits

S. L. HillY. WangI. RiachiF. SchürmannH. Markram

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2012. DOI : 10.1073/pnas.1202128109.

Combinatorial expression rules of ion channel genes in juvenile rat (Rattus norvegicus) neocortical neurons

G. KhazenS. L. HillF. SchürmannH. Markram

PloS One. 2012. DOI : 10.1371/journal.pone.0034786.

SCOUT: Prefetching for Latent Structure Following Queries

F. TauheedT. HeinisF. SchürmannH. MarkramA. Ailamaki

2012. 38th International Conference on Very Large Databases (VLDB '12), Istanbul, Turkey, August, 2012. p. 1531 - 1542. DOI : 10.14778/2350229.2350267.

Intrinsic morphological diversity of thick-tufted layer 5 pyramidal neurons ensures robust and invariant properties of in silico synaptic connections

S. RamaswamyS. L. HillJ. G. KingF. SchürmannY. Wang  et al.

The Journal of physiology. 2012. DOI : 10.1113/jphysiol.2011.219576.

Short-term ionic plasticity at GABAergic synapses

J. V. RaimondoH. MarkramC. J. Akerman

Frontiers in synaptic neuroscience. 2012. DOI : 10.3389/fnsyn.2012.00005.

A neuron membrane mesh representation for visualization of electrophysiological simulations

S. LasserreJ. HernandoS. HillF. SchürmannP. d. M. Anasagasti  et al.

IEEE transactions on visualization and computer graphics. 2012. DOI : 10.1109/TVCG.2011.55.

The human brain project

H. Markram

Scientific American. 2012.

Spike-timing-dependent plasticity: a comprehensive overview

H. MarkramW. GerstnerP. J. Sjöström

Frontiers in synaptic neuroscience. 2012. DOI : 10.3389/fnsyn.2012.00002.

Newsmaker interview: Heny Markram Blue Brain founder responds to critics, clarifies his goals

G. MillerH. Markram

Science. 2011. DOI : 10.1126/science.334.6057.748.

Emergent Properties of in silico Synaptic Transmission in a Model of the Rat Neocortical Column

S. Ramaswamy / H. MarkramS. L. Hill (Dir.)

Lausanne, EPFL, 2011. DOI : 10.5075/epfl-thesis-5208.

Innate neural assemblies for lego memory

H. MarkramR. Perin

Frontiers in neural circuits. 2011. DOI : 10.3389/fncir.2011.00006.

Effective Stimuli for Constructing Reliable Neuron Models

S. DruckmannT. K. BergerF. SchuermannS. HillH. Markram  et al.

Plos Computational Biology. 2011. DOI : 10.1371/journal.pcbi.1002133.

Morphological development of thick-tufted layer v pyramidal cells in the rat somatosensory cortex

S. RomandY. WangM. Toledo-RodriguezH. Markram

Frontiers in neuroanatomy. 2011. DOI : 10.3389/fnana.2011.00005.

Frontiers research : seek, share & create

H. MarkramK. Markram

Common knowledge : the challenge of transdisciplinarity; Lausanne, Switzerland: EPFL Press, 2011. p. 145 - 162.

Predictive Engineering the Membrane Composition of Neocortical Neurons

G. Khazen / H. Markram (Dir.)

Lausanne, EPFL, 2011. DOI : 10.5075/epfl-thesis-5067.

A history of spike-timing-dependent plasticity

H. MarkramW. GerstnerP. J. Sjöström

Frontiers in Synaptic Neuroscience. 2011. DOI : 10.3389/fnsyn.2011.00004.

Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties

E. HayS. HillF. SchürmannH. MarkramI. Segev

PLoS Computational Biology. 2011. DOI : 10.1371/journal.pcbi.1002107.

A synaptic organizing principle for cortical neuronal groups

R. PerinT. K. BergerH. Markram

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2011. DOI : 10.1073/pnas.1016051108.

A Pipeline Based Approach for Experimental Neuroscience Data Management

M. A. Jan / H. MarkramF. Schürmann (Dir.)

Lausanne, EPFL, 2011. DOI : 10.5075/epfl-thesis-4863.

Augmenting cognition

Lausanne: EPFL Press, 2011.

Introducing the Human Brain Project

H. MarkramK. MeierT. LippertS. GrillnerR. Frackowiak  et al.

2011. 2nd European Future Technologies Conference and Exhibition (FET), Budapest, HUNGARY, May 04-06, 2011. p. 39 - 42. DOI : 10.1016/j.procs.2011.12.015.

Organizing neural networks

H. MarkramR. d. C. PerinT. Berger

US11900237 ; US2023394280 ; US2022121907 ; US11126911 ; US2019354841 ; US10387767 ; US10373048 ; KR101816329 ; DK2531959 ; EP2531959 ; CN102859538 ; JP5844286 ; US2015363689 ; JP2013519140 ; CN102859538 ; US2012323833 ; EP2531959 ; KR20120123698 ; WO2011095342 . 2011.

Encoding and decoding of information

H. Markram

ES2823253 ; EP3771103 ; EP2460276 ; CN104901702 ; KR101734596 ; JP5848414 ; CN104901702 ; CN102648582 ; US8941512 ; JP2014209794 ; JP5587412 ; JP2013500660 ; US2012313798 ; US8253607 ; CN102648582 ; EP2460276 ; US2012119926 ; KR20120046760 ; US8159373 ; WO2011012614 ; WO2011012158 ; WO2011012614 ; US2011025532 . 2011.

Channelpedia: an integrative and interactive database for ion channels

R. RanjanG. KhazenL. GambazziS. RamaswamyS. L. Hill  et al.

Frontiers in neuroinformatics. 2011. DOI : 10.3389/fninf.2011.00036.

Engineering Neuron Models : from Ion Channels to Electrical Behavior

R. Ranjan / H. Markram (Dir.)

Lausanne, EPFL, 2011. DOI : 10.5075/epfl-thesis-5129.

Ephaptic coupling of cortical neurons

C. A. AnastassiouR. PerinH. MarkramC. Koch

Nature neuroscience. 2011. DOI : 10.1038/nn.2727.

Emergent Connectivity Principles in the Neocortex

I. Riachi / H. Markram (Dir.)

Lausanne, EPFL, 2010. DOI : 10.5075/epfl-thesis-4631.

The intense world theory - a unifying theory of the neurobiology of autism

K. MarkramH. Markram

Frontiers in human neuroscience. 2010. DOI : 10.3389/fnhum.2010.00224.

Impact of Carbon-Nanotube Substrate Coating in Neuronal Networks

L. Gambazzi / H. Markram (Dir.)

Lausanne, EPFL, 2010. DOI : 10.5075/epfl-thesis-4713.

Brief Bursts Self-Inhibit and Correlate the Pyramidal Network

T. K. BergerG. SilberbergR. PerinH. Markram

Plos Biology. 2010. DOI : 10.1371/journal.pbio.1000473.

Emergent Dynamics in Neocortical Microcircuits

R. d. C. Perin / H. Markram (Dir.)

Lausanne, EPFL, 2010. DOI : 10.5075/epfl-thesis-4705.

Diminished activity-dependent brain-derived neurotrophic factor expression underlies cortical neuron microcircuit hypoconnectivity resulting from exposure to mutant huntingtin fragments

L. GambazziO. GokceT. SeredeninaE. KatsyubaH. Runne  et al.

The Journal of pharmacology and experimental therapeutics. 2010. DOI : 10.1124/jpet.110.167551.

Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex

T. K. BergerR. PerinG. SilberbergH. Markram

Journal Of Physiology-London. 2009. DOI : 10.1113/jphysiol.2009.176552.

Structure and function of the olfactory bulb microcircuit

M. Pignatelli / H. MarkramA. Carleton (Dir.)

Lausanne, EPFL, 2009. DOI : 10.5075/epfl-thesis-4275.

Multiquantal release underlies the distribution of synaptic efficacies in the neocortex

A. LoebelG. SilberbergD. HelbigH. MarkramM. Tsodyks  et al.

Frontiers in computational neuroscience. 2009. DOI : 10.3389/neuro.10.027.2009.

A Component-Based Extension Framework for Large-Scale Parallel Simulations in NEURON

J. G. KingM. HinesS. HillP. H. GoodmanH. Markram  et al.

Frontiers in neuroinformatics. 2009. DOI : 10.3389/neuro.11.010.2009.

Properties of neocortical microcircuits

T. Berger / H. Markram (Dir.)

Lausanne, EPFL, 2009. DOI : 10.5075/epfl-thesis-4454.

Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts

G. CellotE. CiliaS. CipolloneV. RancicA. Sucapane  et al.

Nature Nanotechnology. 2009. DOI : 10.1038/NNANO.2008.374.

Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism

G. T. SilvaJ.-V. Le BéI. RiachiT. RinaldiK. Markram  et al.

Frontiers in synaptic neuroscience. 2009. DOI : 10.3389/neuro.19.001.2009.

Slow oscillations in neural networks with facilitating synapses

O. MelamedO. BarakG. SilberbergH. MarkramM. Tsodyks

Journal of computational neuroscience. 2008. DOI : 10.1007/s10827-008-0080-z.

Fully implicit parallel simulation of single neurons

M. L. HinesH. MarkramF. Schürmann

Journal of computational neuroscience. 2008. DOI : 10.1007/s10827-008-0087-5.

Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic Acid animal model of autism

T. RinaldiC. PerrodinH. Markram

Frontiers in neural circuits. 2008. DOI : 10.3389/neuro.04.004.2008.

Abnormal fear conditioning and amygdala processing in an animal model of autism

K. MarkramT. RinaldiD. La MendolaC. SandiH. Markram

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2008. DOI : 10.1038/sj.npp.1301453.

Fixing the location and dimensions of functional neocortical columns

H. Markram

HFSP journal. 2008. DOI : 10.2976/1.2919545.

Identifying, tabulating, and analyzing contacts between branched neuron morphologies

J. KozloskiK. SfyrakisS. HillF. SchürmannC. Peck  et al.

IBM Journal of Research and Development. 2008. DOI : 10.1147/rd.521.0043.

Inferring connection proximity in networks of electrically coupled cells by subthreshold frequency response analysis

C. CaliT. K. BergerM. PignatelliA. CarletonH. Markram  et al.

J Comput Neurosci. 2008. DOI : 10.1007/s10827-007-0058-2.

Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons

M. PospischilM. Toledo-RodriguezC. MonierZ. PiwkowskaT. Bal  et al.

Biological Cybernetics. 2008. DOI : 10.1007/s00422-008-0263-8.

Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex

G. A. AscoliL. Alonso-NanclaresS. A. AndersonG. BarrionuevoR. Benavides-Piccione  et al.

Nature Reviews Neuroscience. 2008. DOI : 10.1038/nrn2402.

Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data

S. DruckmannT. K. BergerS. HillF. SchürmannH. Markram  et al.

Biological Cybernetics. 2008. DOI : 10.1007/s00422-008-0269-2.

Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid

T. RinaldiK. KulangaraK. AntonielloH. Markram

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2007. DOI : 10.1073/pnas.0704391104.

Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex

J. V. Le BeG. SilberbergY. WangH. Markram

Cereb Cortex. 2007. DOI : 10.1093/cercor/bhl127.

Structure and dynamics of the neocortical microcircuit connectivity

J.-V. Le Bé / H. Markram (Dir.)

Lausanne, EPFL, 2007. DOI : 10.5075/epfl-thesis-3802.

Single-cell RT-PCR, a technique to decipher the electrical, anatomical, and genetic determinants of neuronal diversity

M. Toledo-RodriguezH. Markram

Patch-Clamp Methods and Protocols; Springer, 2007. p. 123 - 139.

Hyperconnectivity of Local Neocortical Microcircuitry Induced by Prenatal Exposure to Valproic Acid

T. RinaldiG. SilberbergH. Markram

Cereb Cortex. 2007. DOI : 10.1093/cercor/bhm117.

Methods For Treating And/Or Preventing Pervasive Developmental Disorders In A Subject

H. MarkramT. RinaldiT. MarkramM. Rodriguez BravoB. Mattson  et al.

WO2007029063 ; WO2007029063 . 2007.

The intense world syndrome – an alternative hypothesis for autism

H. MarkramT. RinaldiK. Markram

Front. Neurosci.. 2007. DOI : 10.3389/neuro.01.1.1.006.2007.

Industrializing neuroscience

H. Markram

Nature. 2007. DOI : 10.1038/445160a.

A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data

S. DruckmannY. BanittA. GidonF. SchürmannH. Markram  et al.

Front. Neurosci.. 2007. DOI : 10.3389/neuro.01.1.1.001.2007.

Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells

G. SilberbergH. Markram

Neuron. 2007. DOI : 10.1016/j.neuron.2007.02.012.

Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits

A. MazzatentaM. GiuglianoS. CampidelliL. GambazziL. Businaro  et al.

The Journal of neuroscience. 2007. DOI : 10.1523/JNEUROSCI.1051-07.2007.

Spontaneous and evoked synaptic rewiring in the neonatal neocortex

J. V. Le BeH. Markram

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2006. DOI : 10.1073/pnas.0604691103.

Un nouveau mécanisme de mémoire : connexions et déconnexions de neurones dans le néocortex de jeunes rats [A new mechanism for memory: neuronal networks rewiring in the young rat neocortex]

J. V. Le BeH. Markram

médecine/sciences. 2006. DOI : 10.1051/medsci/200622121031.

Heterogeneity in the pyramidal network of the medial prefrontal cortex

Y. WangH. MarkramP. H. GoodmanT. K. BergerJ. Ma  et al.

Nat Neurosci. 2006. DOI : 10.1038/nn1670.

The blue brain project

H. Markram

Nat Rev Neurosci. 2006. DOI : 10.1038/nrn1848.

Dynamical principles for neuroscience and intelligent biomimetic devices

A. IjspeertJ. BuchliA. SelverstonM. RabinovichM. Hasler  et al.

2006. EPFL LATSIS Symposium 2006.

Parallel network simulations with NEURON

M. MiglioreC. CanniaW. W. LyttonH. MarkramM. L. Hines

J Comput Neurosci. 2006. DOI : 10.1007/s10827-006-7949-5.

Altered neocortical microcircuitry in the valproic acid rat model of autism

T. Rinaldi / H. Markram (Dir.)

Lausanne, EPFL, 2006. DOI : 10.5075/epfl-thesis-3701.

NEOBASE: databasing the neocortical microcircuit

A. J. MuhammadH. Markram

2005. Healthgrid 2005, Oxford, UK, 7-9 April 2005. p. 167 - 77.

Subthreshold cross-correlations between cortical neurons: A reference model with static synapses

O. MelamedG. SilberbergH. MarkramW. GerstnerM. J. E. Richardson

NEUROCOMPUTING. 2005. DOI : 10.1016/j.neucom.2004.10.098.

Neuropeptide and calcium-binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat

M. Toledo-RodriguezP. GoodmanM. IllicC. WuH. Markram

J Physiol. 2005. DOI : 10.1113/jphysiol.2005.089250.

The Neocortical Microcircuit Database (NMDB)

H. MarkramX. LuoG. SilberbergM. Toledo-RodriguezA. Gupta

Databasing the Brain: From Data to Knowledge (Neuroinformatics); Wiley Press, 2005. p. 327 - 342.

Short-term-plasticity orchestrates the response of pyramidal cells and interneurons to population bursts

M. J. E. RichardsonO. MelamedG. SilberbergW. GerstnerH. Markram

Journal of Computational Neuroscience. 2005. DOI : 10.1007/s10827-005-0434-8.

The neocortical microcircuit as a tabula rasa

N. KalismanG. SilberbergH. Markram

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2005. DOI : 10.1073/pnas.0407088102.

Microcircuits in action--from CPGs to neocortex

S. GrillnerH. MarkramE. De SchutterG. SilberbergF. E. LeBeau

Trends Neurosci. 2005. DOI : 10.1016/j.tins.2005.08.003.

Synaptic pathways in neural microcircuits

G. SilberbergS. GrillnerF. E. LeBeauR. MaexH. Markram

Trends Neurosci. 2005. DOI : 10.1016/j.tins.2005.08.004.

Fading memory and kernel properties of generic cortical microcircuit models

W. MaassT. NatschlagerH. Markram

J Physiol Paris. 2004. DOI : 10.1016/j.jphysparis.2005.09.020.

Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function

H. MonyerH. Markram

Trends Neurosci. 2004. DOI : 10.1016/j.tins.2003.12.008.

Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit

G. SilberbergC. WuH. Markram

J Physiol. 2004. DOI : 10.1113/jphysiol.2004.060962.

Interneurons of the neocortical inhibitory system

H. MarkramM. Toledo-RodriguezY. WangA. GuptaG. Silberberg  et al.

Nat Rev Neurosci. 2004. DOI : 10.1038/nrn1519.

Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex

M. Toledo-RodriguezB. BlumenfeldC. WuJ. LuoB. Attali  et al.

Cereb Cortex. 2004. DOI : 10.1093/cercor/bhh092.

Computational Models for Generic Cortical Microcircuits

W. MaassT. NatschlägerH. Markram

Computational Neuroscience: A Comprehensive Approach; Chapman & Hall/CRC, 2004. p. 575 - 605.

Interneuron Heterogeneity in the Neocortex

A. GuptaM. Toledo-RodriguezG. SilberbergH. Markram

Excitatory-Inhibitory Balance: Synapses, Circuits, Systems; Kluwer Academic Publishing, 2004. p. 149 - 172.

Coding and Learning of behavioral sequences

O. MelamedW. GerstnerW. MaassM. TsodyksH. Markram

Trends in Neurosciences. 2004. DOI : 10.1016/j.tins.2003.10.014.

Dynamics of population rate codes in ensembles of neocortical neurons

G. SilberbergM. BethgeH. MarkramK. PawelzikM. Tsodyks

Journal of Neurophysiology. 2004. DOI : 10.1152/jn.00415.2003.

Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat

Y. WangM. Toledo-RodriguezA. GuptaC. WuG. Silberberg  et al.

J Physiol. 2004. DOI : 10.1113/jphysiol.2004.073353.

Temporal integration in recurrent microcircuits

W. MaassH. Markram

The Handbook of Brain Theory and Neural Networks; MIT Press, 2003. p. 1159 - 1163.

Perspectives of the high-dimensional dynamics of neural microcircuits from the point of view of low-dimensional readouts

S. HäuslerH. MarkramW. Maass

Complexity. 2003. DOI : 10.1002/cplx.10089.

A Model for Real-Time Computation in Generic Neural Microcircuits

W. MaassT. NatschlägerH. MarkramS. BeckerS. Thrun  et al.

2003. NIPS 2002, Vancouver, British Columbia, December 12-14, 2002.

Computer models and analysis tools for neural microcircuits

T. NatschlägerH. MarkramW. Maass

Neuroscience Databases: A Practical Guide; Kluwer Academic Publishers, 2003. p. 123 - 138.

Deriving physical connectivity from neuronal morphology

N. KalismanG. SilberbergH. Markram

Biol Cybern. 2003. DOI : 10.1007/s00422-002-0377-3.

Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons

R. LegensteinH. MarkramW. Maass

Reviews in the Neurosciences. 2003. DOI : 10.1515/REVNEURO.2003.14.1-2.5.

Preface to the Special Issue

J. F. LindenH. Markram

Cerebral Cortex. 2003. DOI : 10.1093/cercor/13.1.1.

Spike frequency adaptation and neocortical rhythms

G. FuhrmannH. MarkramM. Tsodyks

Journal of Neurophysiology. 2002. DOI : 10.1152/jn.2002.88.2.761.

The "Liquid Computer": A Novel Strategy for Real-Time Computing on Time Series

T. NatschlägerW. MaassH. Markram

TELEMATIK. 2002.

Coding of temporal information by activity-dependent synapses

G. FuhrmannI. SegevH. MarkramM. Tsodyks

Journal of Neurophysiology. 2002. DOI : 10.1152/jn.00258.2001.

Synapses as dynamic memory buffers

W. MaassH. Markram

Neural Networks. 2002. DOI : 10.1016/S0893-6080(01)00144-7.

Real-time computing without stable states: a new framework for neural computation based on perturbations

W. MaassT. NatschlagerH. Markram

Neural Comput. 2002. DOI : 10.1162/089976602760407955.

Stereotypy in neocortical microcircuits

G. SilberbergA. GuptaH. Markram

Trends in Neurosciences. 2002. DOI : 10.1016/S0166-2236(02)02151-3.

Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex

Y. WangA. GuptaM. Toledo-RodriguezC. Z. WuH. Markram

Cereb Cortex. 2002. DOI : 10.1093/cercor/12.4.395.

A New Approach towards Vision Suggested by Biologically Realistic Neural Microcircuit Models

W. MaassR. A. LegensteinH. MarkramH. H. BuelthoffS. W. Lee  et al.

2002. Second International Workshop, BMCV 2002, Tübingen, Germany, November 22-24, 2002. p. 282 - 293. DOI : 10.1007/3-540-36181-2_28.

An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing

W. SennH. MarkramM. Tsodyks

Neural computation. 2001.

Synchrony generation in recurrent networks with frequency-dependent synapses

M. TsodyksA. UzielH. Markram

Journal of Neuroscience. 2000. DOI : 10.1523/JNEUROSCI.20-01-j0003.2000.

Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex

A. GuptaY. WangH. Markram

Science. 2000. DOI : 10.1126/science.287.5451.273.

Anatomical and functional differentiation of glutamatergic synaptic innervation in the neocortex

Y. WangA. GuptaH. Markram

Journal of physiology, Paris. 1999. DOI : 10.1016/S0928-4257(00)80059-5.

Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses

H. MarkramD. PikusA. GuptaM. Tsodyks

Neuropharmacology. 1998.

Differential signaling via the same axon of neocortical pyramidal neurons

H. MarkramY. WangM. Tsodyks

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 1998. DOI : 10.1073/pnas.95.9.5323.

Competitive calcium binding: implications for dendritic calcium signaling

H. MarkramA. RothF. Helmchen

Journal of computational neuroscience. 1998. DOI : 10.1023/A:1008891229546.

Neural networks with dynamic synapses

M. TsodyksK. PawelzikH. Markram

Neural computation. 1998.

Information processing with frequency-dependent synaptic connections

H. MarkramA. GuptaA. UzielY. WangM. Tsodyks

Neurobiology of learning and memory. 1998. DOI : 10.1006/nlme.1998.3841.

Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex

H. MarkramJ. LübkeM. FrotscherA. RothB. Sakmann

The Journal of physiology. 1997. DOI : 10.1113/jphysiol.1997.sp022031.

A network of tufted layer 5 pyramidal neurons

H. Markram

Cerebral Cortex. 1997. DOI : 10.1093/cercor/7.6.523.

Neural codes: firing rates and beyond

W. GerstnerA. K. KreiterH. MarkramA. V. M. Herz

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 1997. DOI : 10.1073/pnas.94.24.12740.

Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs

H. MarkramJ. LübkeM. FrotscherB. Sakmann

Science. 1997. DOI : 10.1126/science.275.5297.213.

The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability

M. V. TsodyksH. Markram

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 1997. DOI : 10.1073/pnas.94.2.719.

Redistribution of synaptic efficacy: a mechanism to generate infinite synaptic input diversity from a homogeneous population of neurons without changing absolute synaptic efficacies

H. MarkramM. Tsodyks

Journal of physiology, Paris. 1996. DOI : 10.1016/S0928-4257(97)81429-5.

Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: comparison with synaptic innervation of adjacent neurons of the same class

J. LübkeH. MarkramM. FrotscherB. Sakmann

The Journal of neuroscience. 1996. DOI : 10.1523/JNEUROSCI.16-10-03209.1996.

Redistribution of synaptic efficacy between neocortical pyramidal neurons

H. MarkramM. Tsodyks

Nature. 1996. DOI : 10.1038/382807a0.

Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons

H. MarkramP. J. HelmB. Sakmann

The Journal of physiology. 1995. DOI : 10.1113/jphysiol.1995.sp020708.

Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels

H. MarkramB. Sakmann

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 1994. DOI : 10.1073/pnas.91.11.5207.

The inositol 1,4,5-trisphosphate pathway mediates cholinergic potentiation of rat hippocampal neuronal responses to NMDA

H. MarkramM. Segal

The Journal of physiology. 1992. DOI : 10.1113/jphysiol.1992.sp019015.

Activation of protein kinase C suppresses responses to NMDA in rat CA1 hippocampal neurones

H. MarkramM. Segal

The Journal of physiology. 1992. DOI : 10.1113/jphysiol.1992.sp019389.

Spontaneous recovery of deficits in spatial memory and cholinergic potentiation of NMDA in CA1 neurons during chronic lithium treatment

G. Richter-LevinH. MarkramM. Segal

Hippocampus. 1992. DOI : 10.1002/hipo.450020307.

Actions of norepinephrine in the rat hippocampus

M. SegalH. MarkramG. Richter-Levin

Progress in brain research. 1991. DOI : 10.1016/S0079-6123(08)63819-4.

Calcimycin potentiates responses of rat hippocampal neurons to N-methyl-D-aspartate

H. MarkramM. Segal

Brain research. 1991. DOI : 10.1016/0006-8993(91)90529-5.

Long-lasting facilitation of excitatory postsynaptic potentials in the rat hippocampus by acetylcholine

H. MarkramM. Segal

The Journal of physiology. 1990. DOI : 10.1113/jphysiol.1990.sp018177.

Electrophysiological characteristics of cholinergic and non-cholinergic neurons in the rat medial septum-diagonal band complex

H. MarkramM. Segal

Brain research. 1990. DOI : 10.1016/0006-8993(90)91106-Q.

Regional changes in NGF receptor immunohistochemical labeling in the septum of the aged rat

H. MarkramM. Segal

Neurobiology of aging. 1990. DOI : 10.1016/0197-4580(90)90017-T.

Acetylcholine potentiates responses to N-methyl-D-aspartate in the rat hippocampus

H. MarkramM. Segal

Neuroscience letters. 1990.

Presynaptic cholinergic action in the hippocampus

M. SegalV. GreenbergerH. Markram

EXS. 1989.