Johan Gaume

Head of Unit
EPFL ENAC IIE SLAB
GR B2 401 (Bâtiment GR)
Station 2
CH-1015 Lausanne
Web site: Web site: https://slab.epfl.ch
EPFL ENAC IIE SLAB
GR B2 401 (Bâtiment GR)
Station 2
CH-1015 Lausanne
Web site: Web site: https://www.epfl.ch/schools/enac/about/diversity-office/
Fields of expertise
- Snow
- Avalanches
- Mechanics and geomechanics
- Computational mechanics
- Gravitational mass movements
- Rheology
- Fracture
Biography
I started my scientific career in 2008 at the Grenoble University in the IRSTEA laboratory where I did my master's thesis on the rheology of dense granular materials using the discrete element method. In the same lab, I followed with a PhD on the numerical modeling of the release depth of extreme avalanches using a combined mechanical-statistical approach and spatial extreme statistics.In 2013 I obtained a postdoc position at the WSL Institute for Snow and Avalanche Research SLF in Davos where I was in charge of developing and applying numerical models to improve the evaluation of avalanche release conditions and thus avalanche forecasting. While my PhD was mostly theoretical and numerical, my postdoc in Davos allowed me to gain a practical expertise by participating in laboratory and field experiments which helped to validate the models I develop.
In 2016, I was awarded a SNF grant to work as a research and teaching associate in CRYOS at EPFL on the multiscale modeling of snow and avalanche processes. I developed discrete approaches to model snow micro-structure deformation and failure in order to evaluate constitutive snow models to be used at a larger scale in continuum models. I also developed numerical models for wind-driven snow transport.
In 2017, I was a Visiting Scholar at UCLA to work on a Material Point Method (MPM) to simulate both the initiation and propagation of snow avalanches in a unified manner. The UCLA MPM model was initially developed for the Disney movie "Frozen" and has been modified and enriched based on Critical State Soil Mechanics to model the release and flow of slab avalanches. The results of this collaboration have been published in Nature Communications.
In 2018, I was awarded the SNF Eccellenza Professorial Fellowship and became professor at EPFL and head of SLAB, the Snow and Avalanche Simulation Laboratory. At SLAB, we study micro-mechanical failure and fracture propagation of porous brittle solids, with applications in snow slab avalanche release. We also simulate avalanche dynamics and flow regime transitions over complex 3D terrain through the development of new models (depth-resolved and depth-averaged) based on MPM.
In 2020, I obtained a SPARK grant to develop a new approach to simulate and better understand complex process chains in gravitational mass movements, including permafrost instabilities, rock, snow and ice avalanches and transitions to debris flows.
Current work
- A Material Point Method for Alpine mass movements in a climate change context (SNF SPARK)
- Unified modeling of snow and avalanche mechanics (SNF Eccellenza)
- Multiscale modeling of snow and avalanche processes (SNF Ambizione)
- A Material Point Method for snow avalanche simulation (SNF International Short Visit)
- Discrete element modeling of snowflake fragmentation and wind-blowing snow
- Lead convener. Session “Challenges in measuring and modeling snow mechanics” IUGG 2019, Montreal, Canada.
- International workshop co-coordinator. “Computational methods for snow and avalanche release mechanics” ALERT 2019 Geomaterials conference, Aussois, France
- Principal organizer of the SLAM3 workshop (Slab Avalanche Multiscale Mechanical Modeling), Davos.
- Main director of 3 PhD students, supervision of 1 PostDoc and co-supervision of 2 PhD students
- Scientific reviewer for Nature Geosciences, Cold Region Science and Technology, Journal of Glaciology, Water Resource Research, International Journal of Solids and Structures, Geophysical Research Letters, Journal of Geophysical Research, The Cryosphere.
- Co-convener of the session "Snow and snow cover processes". EGU 2016-2017
- Lecturer in the master course "Physics and Hydrology of Snow". EPFL
- Co-editor. Special Issue “Relevance of snow microstructure study in cryospheric sciences ” in Frontiers in Earth Sciences.
PhD students & PostDoc supervision
PhD Students:- Bertil Trottet (EPFL SLAB)
- Lars Blatny (EPFL SLAB)
- Grégoire Bobillier (co-supervision, SLF)
- Michael Kyburz (co-supervision, SLF)
- Camille Ligneau (co-supervision, SLF)
- Kavitha Sundu (co-supervision, SLF)
- Francis Méloche (UQAR, Canada)
- Minyang Wu (Southeast University, School of Civil Engineering, China)
PostDocs:
- Xingyue Li (EPFL SLAB)
- Alessandro Cicoira (EPFL SLAB)
Visiting:
- 2019: Stephanie Wang (PhD Student at UCLA)
Professional course
SNF Professor and head of laboratory
SLAB Snow and Avalanche Simulation Laboratory
EPFL
2019-today
Visiting Scholar
Computer Science Department
UPenn
2018
Research and teaching associate
CRYOS
EPFL
2016-2018
Visiting Scholar
Department of Mathematics
UCLA, Los Angeles, California
2017
Guest scientist
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
2016-today
Postdoc
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
2013-2016
PhD student
IRSTEA
2009-2012
Education
PhD
Mechanics
University of Grenoble
2009-2012
Master
Mechanics and Physics
Grenoble Institute of Technology
2008
Engineering degree
Soils, solids and fluids mechanics
ENSE3, Grenoble Institute of Technology
2005-2008
Maths Sup - Maths Spé
Mathematics and Physics
Lycée Victor Hugo, Besançon
2003-2005
Publications
Infoscience publications
Publication list
Journal Articles
2022
[1] Detrainment and braking of snow avalanches interacting with forests
Natural Hazards And Earth System Sciences. 2022-03-29. Vol. 22, num. 3, p. 1015-1028. DOI : 10.5194/nhess-22-1015-2022.[2] Post-publication careers: follow-up expeditions reveal avalanches at Dyatlov Pass
Communications Earth & Environment. 2022-03-24. Vol. 3, num. 1, p. 63. DOI : 10.1038/s43247-022-00393-x.2021
[3] Crack propagation speeds in weak snowpack layers
Journal Of Glaciology. 2021-12-13. p. PII S0022143021001180. DOI : 10.1017/jog.2021.118.[4] Computational micromechanics of porous brittle solids
Computers and Geotechnics. 2021-09-09. Vol. 140, p. 104284. DOI : 10.1016/j.compgeo.2021.104284.[5] Quantifying the transition of impact mechanisms of geophysical flows against flexible barrier
Engineering Geology. 2021-08-01. Vol. 289, p. 106188. DOI : 10.1016/j.enggeo.2021.106188.[6] Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches
Landslides. 2021-07-29. DOI : 10.1007/s10346-021-01692-8.[7] Hydrodynamic dead zone in multiphase geophysical flows impacting a rigid obstacle
Powder Technology. 2021-07-01. Vol. 386, p. 335-349. DOI : 10.1016/j.powtec.2021.03.053.[8] A glacier-ocean interaction model for tsunami genesis due to iceberg calving
Communications Earth & Environment. 2021-06-21. Vol. 2, num. 1, p. 130. DOI : 10.1038/s43247-021-00179-7.[9] Micro-mechanical insights into the dynamics of crack propagation in snow fracture experiments
Scientific Reports. 2021-06-03. Vol. 11, num. 1, p. 11711. DOI : 10.1038/s41598-021-90910-3.[10] Mechanisms of slab avalanche release and impact in the Dyatlov Pass incident in 1959
Communications Earth & Environment. 2021-01-28. Vol. 2, num. 1, p. 10. DOI : 10.1038/s43247-020-00081-8.[11] A new physically based impact model for debris flow
Géotechnique. 2021. Vol. 71, num. 8, p. 674-685. DOI : 10.1680/jgeot.18.P.365.2020
[12] Instability of a thin viscous film flowing under an inclined substrate: the emergence and stability of rivulets
Journal Of Fluid Mechanics. 2020-12-10. Vol. 904, p. A23. DOI : 10.1017/jfm.2020.673.[13] Editorial: About the Relevance of Snow Microstructure Study in Cryospheric Sciences
Frontiers In Earth Science. 2020-11-20. Vol. 8, p. 619509. DOI : 10.3389/feart.2020.619509.[14] Microscopic Origin of Nonlocal Rheology in Dense Granular Materials
Physical Review Letters. 2020-10-27. Vol. 125, num. 18, p. 188001. DOI : 10.1103/PhysRevLett.125.188001.[15] The mechanical origin of snow avalanche dynamics and flow regime transitions
Cryosphere. 2020-10-12. Vol. 14, num. 10, p. 3381-3398. DOI : 10.5194/tc-14-3381-2020.[16] Microstructural controls of anticrack nucleation in highly porous brittle solids
Scientific Reports. 2020-07-24. Vol. 10, num. 1, p. 12383. DOI : 10.1038/s41598-020-67926-2.[17] Decoupling the role of inertia, friction and cohesion in dense granular avalanche pressure build‐up on obstacles.
Journal of Geophysical Research: Earth Surface. 2020-02-11. Vol. 125, num. 2, p. 18. DOI : 10.1029/2019JF005192.[18] Micromechanical modeling of snow failure
The Cryosphere. 2020-01-10. Vol. 14, num. 1, p. 39-49. DOI : 10.5194/tc-14-39-2020.[19] Assessing debris flow impact on flexible ring net barrier: A coupled CFD-DEM study
Computers and Geotechnics. 2020. Vol. 128, p. 103850. DOI : 10.1016/j.compgeo.2020.103850.2019
[20] Investigating the release and flow of snow avalanches at the slope-scale using a unified model based on the material point method
Cold Regions Science And Technology. 2019-12-01. Vol. 168, p. 102847. DOI : 10.1016/j.coldregions.2019.102847.[21] Cohesion-Induced Enhancement of Aeolian Saltation
Geophysical Research Letters. 2019-05-28. Vol. 46, num. 10, p. 5566-5574. DOI : 10.1029/2019GL082195.[22] Numerical investigation of the mixed-mode failure of snow
Computational Particle Mechanics. 2019-01-24. Vol. 6, p. 439–447. DOI : 10.1007/s40571-019-00224-5.2018
[23] Dynamic anticrack propagation in snow
Nature Communications. 2018-09-30. Vol. 9, num. 1, p. 3047. DOI : 10.1038/s41467-018-05181-w.[24] Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release
Geophysical Research Letters. 2018-08-28. Vol. 45, num. 16, p. 8363-8369. DOI : 10.1029/2018GL078900.[25] A mechanically-based model of snow slab and weak layer fracture in the Propagation Saw Test
International Journal of Solids and Structures. 2018-02-09. Vol. 158, p. 1-20. DOI : 10.1016/j.ijsolstr.2017.12.033.2017
[26] A review of finite-element modelling in snow mechanics
Journal of Glaciology. 2017-07-10. Vol. 59, num. 218, p. 1189-1201. DOI : 10.3189/2013JoG13J121.[27] Les tests de stabilité à la loupe
Neige et avalanches. 2017-04-04. num. 157, p. 15-16.[28] Assessing snow instability in skier-triggered snow slab avalanches by combining failure initiation and crack propagation
Cold Regions Science And Technology. 2017. Vol. 144, p. 6-15. DOI : 10.1016/j.coldregions.2017.05.011.[29] Scaling laws for the mechanics of loose and cohesive granular materials based on Baxter's sticky hard spheres
Physical Review E. 2017. Vol. 96, num. 3, p. 032914. DOI : 10.1103/PhysRevE.96.032914.[30] Fragmentation of wind-blown snow crystals
Geophysical Research Letters. 2017. Vol. 44, num. 9, p. 4195-4203. DOI : 10.1002/2017GL073039.[31] Snow fracture in relation to slab avalanche release: critical state for the onset of crack propagation
Cryosphere. 2017. Vol. 11, num. 1, p. 217-228. DOI : 10.5194/tc-11-217-2017.2016
[32] Temporal evolution of crack propagation propensity in snow in relation to slab and weak layer properties
The Cryosphere. 2016-11-11. Vol. 10, num. 6, p. 2637-2653. DOI : 10.5194/tc-10-2637-2016.[33] Estimating the effective elastic modulus and specific fracture energy of snowpack layers from field experiments
Journal of Glaciology. 2016-07-25. Vol. 62, num. 236, p. 997-1007. DOI : 10.1017/jog.2016.90.[34] Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack
Natural Hazards and Earth System Sciences. 2016-03-18. Vol. 16, num. 3, p. 775-788. DOI : 10.5194/nhess-16-775-2016.2015
[35] Modeling of crack propagation in weak snowpack layers using the discrete element method
The Cryosphere. 2015-10-08. Vol. 9, num. 5, p. 1915-1932. DOI : 10.5194/tc-9-1915-2015.[36] Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area
The Cryosphere. 2015-04-27. Vol. 9, num. 2, p. 795-804. DOI : 10.5194/tc-9-795-2015.[37] A new mixed-mode failure criterion for weak snowpack layers
Geophysical Research Letters. 2015-03-27. Vol. 42, num. 5, p. 1427-1432. DOI : 10.1002/2014GL062780.[38] Evaluating snow weak-layer failure parameters through inverse finite element modelling of shaking-platform experiments
Natural Hazards and Earth System Sciences. 2015-01-15. Vol. 15, num. 1, p. 119-134. DOI : 10.5194/nhess-15-119-2015.[39] Granulation of snow: From tumbler experiments to discrete element simulations
Journal Of Geophysical Research-Earth Surface. 2015. Vol. 120, num. 6, p. 1107-1126. DOI : 10.1002/2014Jf003294.2014
[40] Evaluation of slope stability with respect to snowpack spatial variability
Journal of Geophysical Research: Earth Surface. 2014-08-21. Vol. 119, num. 9, p. 1783-1799. DOI : 10.1002/2014JF003193.2013
[41] Prédétermination des hauteurs de départ d'avalanches : une approche par extrêmes spatiaux
La Houille Blanche. 2013-10-05. num. 5, p. 30-36. DOI : 10.1051/lhb/2013040.[42] Mapping extreme snowfalls in the French Alps using max-stable processes
Water Resources Research. 2013-02-28. Vol. 49, num. 2, p. 1079-1098. DOI : 10.1002/wrcr.20083.[43] Influence of weak-layer heterogeneity on snow slab avalanche release: application to the evaluation of avalanche release depths
Journal of Glaciology. 2013. Vol. 59, num. 215, p. 423-437. DOI : 10.3189/2013JoG12J161.2012
[44] Relative influence of mechanical and meteorological factors on avalanche release depth distributions: An application to French Alps
Geophysical Research Letters. 2012-06-20. Vol. 39, num. 12, p. L12401. DOI : 10.1029/2012GL051917.2011
[45] Quasistatic to inertial transition in granular materials and the role of fluctuations
Physical Review E. 2011-11-11. Vol. 84, num. 5, p. 051304. DOI : 10.1103/PhysRevE.84.051304.[46] Using spatial and spatial-extreme statistics to characterize snow avalanche cycles
Procedia Environmental Sciences. 2011. Vol. 7, p. 224-229. DOI : 10.1016/j.proenv.2011.07.039.2010
[47] Cross-comparison of meteorological and avalanche data for characterising avalanche cycles: The example of December 2008 in the eastern part of the French Alps
Cold Regions Science and Technology. 2010. Vol. 64, num. 2, p. 119-136. DOI : 10.1016/j.coldregions.2010.08.009.Conference Papers
2018
[48] Avalanche pressures at the Vallée de la Sionne test site: interaction of avalanches and narrow strictures studied with DEM.
2018. Proceedings of the International Snow Science Workshop 2018, Innsbruck, Austria, 2018.[49] Modeling the Propagation Saw Test with Discrete Elements
2018. Proceedings of the International Snow Science Workshop 2018, Innsbruck, Austria, 2018.[50] Unified modeling of the release and flow of snow avalanches using MPM
2018. Proceedings of the International Snow Science Workshop 2018, Innsbruck, Austria, 2018.2016
[51] A new crack propagation criterion for skier-triggered snow slab avalanches
2016. International Snow Science Workshop, Breckenridge, Colorado, USA.[52] Critical length for the onset of crack propagation in snow: reconciling shear and collapse
2016. International Snow Science Workshop, Breckenridge, Colorado, USA.Book Chapters
2020
[53] Modeling snow and avalanches with the Material Point Method and finite strain elastoplasticity
ALERT Doctoral School 2020: Point based numerical methods in geomechanics; The Alliance of Laboratories in Europe for Education, Research and Technology, 2020. 978-2-956135-96-8.Posters
2019
[54] Micromechanical controls of mixed-mode anticrack nucleation in porous solids: application to snow failure
IUGG 2019, Montreal.[55] A Material Point Method for snow and avalanche mechanics
IUGG 2019, Montreal.Talks
2021
[56] Investigating the mechanics of porous brittle solids with the material point method and Gaussian random field microstructures
XVI International Conference on Computational Plasticity. Fundamentals and Applications (COMPLAS 2021), Barcelona, Spain, 7th - 9th September, 2021.[57] A unified framework for computational microstructure-based snow mechanics
23rd EGU General Assembly (vEGU21), [Held online], 19-30 April, 2021.2020
[58] Recent progress in snow and avalanche modeling
CSAW 19th annual Colorado Snow and Avalanche Workshop, Online conference, Octobre 14-16, 2020.[59] Sharp transition in modes of dynamic crack propagation in dry-snow slab avalanche
EGU General Assembly 2020, Vienna, Austria, May 4–8, 2020.[60] Microstructure-based modeling of snow using the material point method and finite strain elastoplasticity
EGU General Assembly 2020, Vienna, Austria (virtually), May 8, 2020.[61] Avalanches: mieux les comprendre
Safety Shred Days - Edition Suisse, Thyon les Collons, Suisse, Janvier 18, 2020.[62] Avalanches: théorie et pratique
Safety Shred Days : Have fun and Ride Safe !, Areches-Beaufort, France, Janvier 4-5, 2020.[63] A Material Point Method for Alpine Mass Movements
EGU General Assembly 2021, Online, April 19-30, 2021.[64] Computational modeling of snow avalanche dynamics using the material point method
MEGA.Seminar MEchanics GAthering Seminar Series, Lausanne, Suisse, 12 November, 2020.[65] Numerical modeling of snow avalanche dynamics based on the Material Point Method
EGU General Assembly 2020, Online conference, May 4-8, 2020.2019
[66] Modeling Solid-fluid Transitions in Snow Avalanches Using the Material Point Method
Particles 2019. VI International Conference on Particle-Based Methods, Barcelona, Spain, Octobre 28-30, 2019.[67] Universal features of anticrack nucleation in porous solids
Particles 2019. VI International Conference on Particle-Based Methods, Barcelona, Spain, Octobre 28-30, 2019.[68] 50 nuances de neige
High Five Festival. Le festival international du ski...mais pas que !, Annecy, France, Octobre 4-6, 2019.[69] A material point method for glacier calving
27th IUGG General Assembly 2019, Montreal, Canada, July 8-18, 2019.[70] Modeling snow failure and dynamic fracture with discrete elements
21st EGU General Assembly, EGU2019, Vienne, Autriche, April 7-12, 2019.[71] How avalanche velocity and cohesion influence impact pressure build-up on structures
21st EGU General Assembly, EGU2019, Vienne, Autriche, April 7-12, 2019.2018
[72] Unified modeling of avalanche release and flow using MPM
OSUG Snow workshop, Centre d'Etude de la Neige, MétéoFrance, Grenoble, France.[73] Unified modeling of snow and avalanche mechanics using the material point method
EPFL IIE Seminar Series, EPFL, Lausanne, Switzerland.[74] Dense flow avalanche pressure on obstacle studied with DEM
EGU, Vienna, Austria, April 09-13, 2018.[75] Micromechanical modeling of crack propagation for snow slab avalanche release. Workshop: Accounting for phase transitions in granular media: from micromechanics to macroscopic unified modeling
Milano, Italy, September 6-7, 2018.[76] Modeling crack propagation for snow slab avalanche release with discrete elements
ECCM ECFD, Glasgow, UK, 2018.[77] Dense flow avalanche pressure on obstacle studied with DEM
ECCM ECFD, Glasgow, UK, 2018.[78] Dynamics of propagating anticracks in snow slab avalanches
EGU, Vienna, Austria, April 09-13, 2018.[79] Unified modeling of the release and flow of snow avalanches using MPM
EGU, Vienna, Austria, April 09-13, 2018.[80] Unified modeling of the release and flow of snow avalanches using the material point method
ECCM ECFD, Glascow, UK, 2018.2017
[81] Unified modeling of slab avalanche release and flow using the material point method
SLF Seminar, Davos, Switzerland.Student Projects
2021
[82] A depth-averaged material point method for alpine mass movements
2021[83] The protective effect of forests with respect to avalanche dynamics
2021[84] Depth-Averaged Material Point Method for the Release of Slab Avalanches
20212020
[85] Suivi des hauteurs de neige pour une rénovation ciblée de paravalanches
2020-01-17[86] Oscillatory compaction bands within a Menger sponge
2020Teaching Resources
2020
[87] Modeling snow and avalanches with the Material Point Method and finite strain elastoplasticity
2020.Media
2019
[88] Deep inside the deadly avalanche that climate change built
2019-02-06.2018
[89] A Mind-Bending Avalanche Animation That Could Save Your Life
2018-08-13.[90] Lawinenforscher arbeiteten für «Frozen»-Film
2018-08-07.[91] L’avalanche de plaque prédite en 3D
2018-08-06.[92] Avalanche prediction model a boon for rescuers and filmmakers
2018-08-04.[93] The subtle mechanics of an avalanche - as seen in 3D
2018-08-03.2017
[94] Johan Gaume a mis au point un nouveau modèle pour évaluer les conditions de déclenchement des avalanches
2017-03-03.[95] Un modèle numérique pour prévenir les avalanches
2017-02-05.[96] Du nouveau dans la prévision du risque d’avalanche
2017-02-01.[97] Du nouveau dans la prévision du risque d'avalanche
2017-02-01.[98] Towards a better forecast of slab avalanches
2017-01-31.Selected publications
Gaume J, Chambon G, van Herwijnen A, Schweizer J. Geophys. Res. Lett. 45(16) 8363-8369 |
Stress concentrations in weak snowpack layers and condition for slab avalanche release |
Gaume J, Loewe H, Tan S, Tsang L. Physical Review E (in press). 2017 |
Scaling laws for the mechanics of loose and cohesive granular materials based on Baxter’s sticky hard spheres |
Gaume J and Reuter B Cold Reg. Sci. Technol. (in press). 2017 |
Assessing snow instability in skier-triggered snow slab avalanches by combining failure initiation and crack propagation |
Comola F, Kok J, Gaume J, Paterna E, Lehning M. Geophys. Res. Lett. 44, doi:10.1002/2017GL073039. 2017. |
Fragmentation of wind-blown snow crystals |
Gaume J, van Herwijnen A, Chambon G, Wever N, Schweizer J. The Cryosphere, 11, 217-228. 2017. |
Snow fracture in relation to slab avalanche release: critical state for the onset of crack propagation |
Schweizer J, Reuter B, van Herwijnen A, Richter B, Gaume J. The Cryosphere, 10, 2637-2653. 2016 |
Temporal evolution of crack propagation propensity in snow in relation to slab and weak layer properties |
van Herwijnen A, Gaume J, Bair E, Reuter B, Birkeland K, Schweizer J. J. Glaciol., 62(236), 997-1007, 2016 |
Estimating the effective elastic modulus and specific fracture energy of snowpack layers from field experiments |
Monti F*, Gaume J*, Schweizer J. (* co-first authors). Nat. Hazards Earth Syst. Sci., 16, 775-788. 2016 |
Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack |
Gaume J, van Herwijnen A, Chambon G, Birkeland K, Schweizer J. The Cryosphere, 9, 1915-1932. 2015. |
Modeling of crack propagation in weak snowpack layers using the discrete element method. |
Steinkogler W, Gaume J, Loewe H, Sovilla B, Lehning M. J. Geophys. Res., 120, 1107-1126. 2015 |
Granulation of snow: From tumbler experiments to discrete element simulations. |
Reiweger I*, Gaume J*, Schweizer J. (* co-first authors) Geophys. Res. Lett., 42, 1427–1432, 2015 |
A new mixed mode failure criterion for weak snowpack layers. |
Gaume J, Chambon G, Eckert N, Naaim M, Schweizer J. The Cryosphere, 9, 795-804, 2014 |
Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release areas., |
Gaume J, Schweizer J, van Herwijnen A, Chambon G, Reuter B, Eckert N, Schweizer J. J. Geophys. Res, 119, 2014 |
Evaluation of slope stability with respect to snowpack spatial variability. |
Podolskiy E, Chambon G, Naaim M, Gaume J. Nat. Hazard Earth Syst. Sci. |
Evaluation of rupture Mohr-Coulomb parameters through finite element modelling of shaking plateform experiments |
Podolskiy E, Chambon G, Naaim M, Gaume J. J. Glaciol., 59(218), 1189-1201, 2013 |
A review of finite element modelling in snow mechanics |
Gaume J, Chambon G, Eckert N, Naaim M. J. Glaciol., 59(215), 423-437, 2013. |
Influence of weak layer heterogeneity on slab avalanche release: Application to the evaluation of avalanche release depths. |
Gaume J, Eckert N, Bel L, Chambon G, Naaim M. Water Resour. Res., 49(2), 1079-1098, 2013 |
Mapping extreme snowfalls in the French Alps using max-stable processes |
Gaume J, Chambon G, Eckert N, Naaim M. Geophys. Res. Lett., 39(12), L12401, 2012. |
Relative influence of mechanical and meteorological factors on slab avalanche release depth distributions |
Eckert N, Coleou C, Castebrunet H, Deschatres M, Giraud G, Gaume J. Cold Reg. Sci. Technol., 64, 119-136, 2011 |
Cross comparison of meteorological and avalanche data for characterizing avalanche cycles: the example of December 2008 in the eastern part of the southern French Alps |
Eckert N, Gaume J, Castebrunet H. Procedia Environmental sciences, 7, 224-229, 2011 |
Using spatial and spatial-extreme statistics to characterize snow avalanche cycles |
Gaume J, Chambon G, Naaim M. Phys. Rev. E., 84(5), 051304, 2011 |
Quasistatic to inertial transition in granular materials and the role of fluctuations |
Other publications
PDFs: Researchgate profile
https://www.researchgate.net/profile/Johan_GaumeTeaching & PhD
Teaching
Environmental Sciences and Engineering
Mechanical Engineering
PhD Programs
Doctoral Program in Civil and Environmental Engineering
Doctoral Program in Mechanics