Max-Olivier Hongler
Expertise
Applied Stochastic Processes
Nonlinear Dynamics
Mission
.
contact
BM 5.132
Tel 021 693 53 91
Master in Theoretical Physics (Uni-Geneva (1975)
Doctoral degree in Theoretical Physics (Uni-Geneva 1981)
Post-doctoral Positions (Theoretical Physics Uni-Austin (Texas), USA 1981-1982)
Post-doctoral Positions (Theoretical Physics Uni-Toronto, Canada, 1982-1983)
Premier assistant (Theoretical Physics Uni-Geneva 1984-1988)
Research associate (Micro-engineering EPFL 1989)
Investigator principal (Theoretical Physics Uni-Lisbonne, Portugal, 1989-1990)
Invited Professor (Theoretical Physics Uni-Bielefeld, Germany, 1991)
Scientific adjunct (Micro-engineering EPFL 1992- 1999)
Adjunct Professor (Micro-engineering EPFL 2000- 2016)
Honorary Professor (EPFL since 2016)
Doctoral degree in Theoretical Physics (Uni-Geneva 1981)
Post-doctoral Positions (Theoretical Physics Uni-Austin (Texas), USA 1981-1982)
Post-doctoral Positions (Theoretical Physics Uni-Toronto, Canada, 1982-1983)
Premier assistant (Theoretical Physics Uni-Geneva 1984-1988)
Research associate (Micro-engineering EPFL 1989)
Investigator principal (Theoretical Physics Uni-Lisbonne, Portugal, 1989-1990)
Invited Professor (Theoretical Physics Uni-Bielefeld, Germany, 1991)
Scientific adjunct (Micro-engineering EPFL 1992- 1999)
Adjunct Professor (Micro-engineering EPFL 2000- 2016)
Honorary Professor (EPFL since 2016)
Publications
2024
1. Hongler, M. O.; Gallay, O.; Hashemi, F. “Nonlinear Economic State Equilibria via van der Waals Modeling.” Entropy doi:10.3390/e26090727
2. Hongler, M.-O.; Rivier, R. “An exact bandit model for the risk-volatility tradeoff.” Journal of Dynamics and Games doi:10.3934/jdg.2024011
3. Hongler, M. “Stochastic pairwise preference convergence in Bayesian agents.” Physical Review E doi:10.1103/PhysRevE.109.054106
2023
1. Arcand, J.-L.; Kumar, S. H.; Hongler, M.-O.; Rinaldo, D. “Can one hear the shape of a target zone?.” Journal of Mathematical Economics doi:10.1016/j.jmateco.2023.102852
2022
1. Hongler, M.-O. “Cauchy Processes, Dissipative Benjamin–Ono Dynamics and Fat-Tail Decaying Solitons.” Fractal and Fractional doi:10.3390/fractalfract6010015
2021
1. Hashemi, F.; Gallay, O.; Hongler, M.-O. “Opinion formation dynamics – Swift collective disillusionment triggered by unmet expectations.” Physica A: Statistical Mechanics and its Applications doi:10.1016/j.physa.2021.125797
2. Rodriguez, J.; Hongler, M.-O. “How Chaotic Dynamics Drive a Vintage Grill-Room Spit.” 13th Chaotic Modeling and Simulation International Conference (Florence, 2020), in Springer proceedings doi:10.1007/978-3-030-70795-8_50 [Conference proceedings chapter]
3. Hongler, M.-O. “Brownian Swarm Dynamics and Burgers’ Equation with Higher Order Dispersion.” Symmetry doi:10.3390/sym13010057
2020
1. Hongler, M.-O. “Mean-Field Games and Swarms Dynamics in Gaussian and Non-Gaussian Environments.” Journal of Dynamics and Games doi:10.3934/jdg.2020001
2. Arcand, J.-L.; Hongler, M.-O.; Rinaldo, D. “Increasing risk: Dynamic mean-preserving spreads.” Journal of Mathematical Economics doi:10.1016/j.jmateco.2018.11.003
2019
1. Gallay, O.; Hashemi, F.; Hongler, M.-O. “Imitation, Proximity, and Growth – A Collective Swarm Dynamics Approach.” Advances in Complex Systems doi:10.1142/S0219525919500115
2. Hongler, M.-O.; Filliger, R. “On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications.” Methodology and Computing in Applied Probability doi:10.1007/s11009-017-9566-3
2017
1. Athanasiou, C. E.; Hongler, M.-O.; Bellouard, Y. “Unraveling Brittle-Fracture Statistics from Intermittent Patterns Formed During Femtosecond Laser Exposure.” Physical Review Applied doi:10.1103/PhysRevApplied.8.054013
2016
1. Sartoretti, G. A.; Hongler, M.-O. “Interacting Brownian Swarms: Some Analytical Results.” Entropy doi:10.3390/e18010027
2. Sartoretti, G. A. “Control of agent swarms in random environments.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-6946 [PhD thesis (director)]
2015
1. Groothoff, N.; Hongler, M.-O.; Kazansky, P.; Bellouard, Y. “Transition and self-healing process between chaotic and self-organized patterns observed during femtosecond laser writing.” Optics Express doi:10.1364/OE.23.016993
2. Hongler, M.-O. “Exact soliton-like probability measures for interacting jump processes.” The Mathematical Scientist
2014
1. Hongler, M.-O.; Filliger, R.; Gallay, O. “Local versus nonlocal barycentric interactions in 1D agent dynamics.” Mathematical Biosciences and Engineering doi:10.3934/rnbe.2014.11.303
2. Sartoretti, G. A.; Hongler, M.-O.; Elias de Oliveira, M.; Mondada, F. “Decentralized Self-Selection of Swarm Trajectories: From Dynamical Systems to Robotic Implementation.” Swarm Intelligence doi:10.1007/s11721-014-0101-7
3. Sartoretti, G.; Hongler, M.-O. “The estimation problem and heterogeneous swarms of autonomous agents.” SMTDA 2014 – Stochastic Modeling Techniques and Data Analysis (Lisbon, June 2014) [Conference paper]
4. Sartoretti, G. A.; Hongler, M.-O. “Soft Control of Self-organized Locally Interacting Brownian Planar Agents.” Computer Aided Systems Theory – EUROCAST 2013 (Springer) [Book chapter / conference proceedings]
2013
1. Hongler, M.-O. “Super-Diffusive Noise Source in Asset Dynamics.” Journal of Mathematical Finance doi:10.4236/jmf.2013.31004
2. Sartoretti, G. A.; Hongler, M.-O. “Self-organized mixed canonical-dissipative dynamics for Brownian planar agents.” Cybernetics and Physics
3. Rodriguez, J.; Hongler, M.-O.; Blanchard, P. “Time-Delayed Interactions in Networks of Self-Adapting Hopf Oscillators.” ISRN Mathematical Analysis doi:10.1155/2013/816353
4. Sartoretti, G.; Hongler, M.-O. “Self-Organized Mixed Canonic–Dissipative Dynamics for Brownian Planar Agents.” EUROCAST 2013 – International Conference on Computer Aided Systems Theory (Las Palmas, Feb 2013) [Conference paper]
5. Hongler, M.-O.; Filliger, R.; Blanchard, P.; Rodriguez, J. “On Stochastic Processes Driven by Ballistic Noise Sources.” In: Contemporary Topics in Mathematics and Statistics with Applications (Asian Books, New Delhi) [Book chapter]
6. Sartoretti, G. A.; Hongler, M.-O. “Soft control of swarms: Analytical approach.” ICAART 2013 – 5th International Conference on Agents and Artificial Intelligence (Barcelona, Feb 2013) [Conference paper]
7. Rodriguez, J.; Hongler, M.-O.; Blanchard, P. “Self-shaping attractors for coupled limit cycle oscillators.” In: Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering (Springer) [Book chapter]
2012
1. Hashemi, F.; Hongler, M.-O.; Gallay, O. “Spatio-Temporal Patterns for a Generalized Innovation Diffusion Model.” Theoretical Economic Letters doi:10.4236/tel.2012.21001
2. Rodriguez, J.; Hongler, M.-O. “Networks of Self-Adaptive Dynamical Systems.” IMA Journal of Applied Mathematics doi:10.1093/imamat/hxs057
2011
1. Bellouard, Y.; Hongler, M.-O. “Femtosecond-laser generation of self-organized bubble patterns in fused silica.” Optics Express doi:10.1364/OE.19.006807
2. Rodriguez, J.; Hongler, M.-O.; Blanchard, P. “Self-Adaptive Attractor-Shaping for Oscillators Networks.” Third International Workshop on Nonlinear Dynamics and Synchronization & 16th International Symposium on Theoretical Electrical Engineering (Klagenfurt, July 2011) [Workshop paper]
3. Bellouard, Y.; Hongler, M. O. “Ultra-fast writing of self-organized bubble networks using femtosecond laser exposure in the cumulative regime.” CLEO EUROPE/EQEC 2011 doi:10.1109/CLEOE.2011.5942813 [Conference paper]
4. Rodriguez, J. “Networks of Self-Adaptive Dynamical Systems.” PhD thesis, EPFL (director: M.-O. Hongler; co-director: P. Blanchard) doi:10.5075/epfl-thesis-5221 [PhD thesis (director)]
2010
1. Rodriguez, J.; Hongler, M.-O. “Parametric Resonance in Time-Dependent Networks of Hopf Oscillators.” European Conference on Complex Systems (ECCS'10), Lisbon, Sept 2010 [Conference paper]
2. Hongler, M.-O.; Filliger, R.; Blanchard, P. “Hyperbolic angular statistics for globally coupled oscillators.” Europhysics Letters (EPL) doi:10.1209/0295-5075/89/10001
3. Gallay, O. “Agent-Based Routing in Queueing Systems.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-4598 [PhD thesis (director)]
4. Hongler, M.-O.; Gallay, O.; Hülsmann, M.; Cordes, P.; Colmorn, R. “Centralized versus decentralized control: A solvable stylized model in transportation.” Physica A doi:10.1016/j.physa.2010.05.047
2009
1. Gallay, O.; Hongler, M.-O. “Multi-Agent Adaptive Mechanism Leading to Optimal Real-Time Load Sharing.” MATHMOD 2009 (Vienna, Feb 2009) [Conference paper]
2. Rodriguez, J.; Hongler, M.-O. “Networks of limit cycle oscillators with parametric learning capability.” In: Recent Advances in Nonlinear Dynamics and Synchronization (Springer) [Book chapter]
3. Hongler, M.-O.; Filliger, R.; Blanchard, P.; Rodriguez, J. “Noise induced temporal patterns in populations of globally coupled oscillators.” INDS'09 – 2nd International Workshop on Nonlinear Dynamics and Synchronization (Klagenfurt, July 2009) doi:10.1109/INDS.2009.5227997 [Workshop paper]
4. Rodriguez, J.; Hongler, M.-O. “Networks of mixed canonical-dissipative systems and dynamic hebbian learning.” International Journal of Computational Intelligence Systems doi:10.1080/18756891.2009.9727649
5. Gallay, O.; Hongler, M.-O. “Circulation of Autonomous Agents in Production and Service Networks.” International Journal of Production Economics doi:10.1016/j.ijpe.2008.01.012
2008
1. Gallay, O.; Hongler, M.-O. “Weariness and Loyalty Loss in Recurrent Service Models.” MOSIM'08 (Paris, April 2008) [Conference paper]
2. Hongler, M.-O.; Parthasarathy, P. “On a super-diffusive, nonlinear birth and death process.” Physics Letters A doi:10.1016/j.physleta.2008.01.082
3. Filliger, R.; Hongler, M.-O.; Streit, L. “A Connection Between an Exactly Solvable Stochastic Optimal Control Problem and a Nonlinear Reaction Diffusion Equation.” Journal of Optimization Theory and Applications doi:10.1007/s10957-007-9346-2
4. Gallay, O.; Hongler, M.-O. “Market Sharing Dynamics Between Two Service Providers.” European Journal of Operational Research doi:10.1016/j.ejor.2007.06.018
5. Gallay, O.; Hongler, M.-O. “Cooperative Dynamics of Loyal Customers in Queueing Networks.” Journal of Systems Science and Systems Engineering doi:10.1007/s11518-008-5078-6
6. Rodriguez, J.; Hongler, M.-O. “Networks of Mixed Canonic–Dissipative Systems and Dynamic Hebbian Learning.” INDS'08 – 1st International Workshop on Nonlinear Dynamics and Synchronization (Klagenfurt, July 2008) [Workshop paper]
2007
1. Gallay, O.; Hongler, M. O. “Cooperative dynamics of loyal customers in queueing networks.” ICSSSM 2006 – International Conference on Service Systems and Service Management (published 2007) doi:10.1109/ICSSSM.2006.320780 [Conference paper]
2. Gallay, O.; Hongler, M.-O. “Market Partition in a Dynamic Linear City Game Model.” EURO XXII (Prague, July 2007) [Conference paper]
3. Filliger, R.; Hongler, M.-O. “Explicit Gittins' Indices for a Class of Superdiffusive Processes.” Journal of Applied Probability doi:10.1239/jap/1183667421
4. Blanchard, P.; Hongler, M.-O. “Modeling human activity in the spirit of Barabasi's queueing systems.” Physical Review E doi:10.1103/PhysRevE.75.026102
2006
1. Dusonchet, F.; Hongler, M.-O. “Priority index heuristic for multi-armed bandit problems with set-up costs and/or set-up time delays.” International Journal of Computer Integrated Manufacturing doi:10.1080/03081070500066062
2. Hongler, M. O.; Filliger, R.; Blanchard, P. “Soluble models for dynamics driven by super-diffusive noise.” Physica A doi:10.1016/j.physa.2006.02.036
3. Hongler, M.-O.; Filliger, R. “An exact solution to a Kolmogorov type model for two interacting populations.” The Mathematical Scientist
2005
1. Filliger, R.; Hongler, M. O. “Optimal threshold control for failure-prone tandem production systems.” IIE Transactions doi:10.1080/07408170590969870
2. Hongler, M. O.; Filliger, R. “Syphon dynamics: a soluble model of multi-agents cooperative behavior.” Europhysics Letters (EPL) doi:10.1209/epl/i2004-10462-x
3. Filliger, R. “From car traffic to production flows: a guided tour through solvable stochastic transport processes.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-3247 [PhD thesis (director)]
4. Filliger, R.; Hongler, M. O. “Cooperative flow dynamics in production lines with buffer level dependent production rates.” European Journal of Operational Research doi:10.1016/j.ejor.2004.03.011
2004
1. Hongler, M. O.; Cheikhrouhou, N.; Glardon, R. “An elementary model for customer fidelity.” [venue not specified in EPFL listing]
2. Filliger, R.; Hongler, M. O. “Supersymmetry in random two velocity processes.” Physica A doi:10.1016/j.physa.2003.09.048
3. Blanchard, P.; Hongler, M. O. “Self-organization of critical behavior in controlled general queueing models.” Physics Letters A doi:10.1016/j.physleta.2004.01.015
4. Dalang, R. C.; Hongler, M.-O. “The right time to sell a stock whose price is driven by Markovian noise.” Annals of Applied Probability doi:10.1214/105051604000000747
5. Filliger, R.; Hongler, M. O. “On the outflow process of N-stations merge systems for items with non-vanishing spatial extensions.” [venue not specified in EPFL listing]
6. Filliger, R.; Hongler, M. O. “Relative entropy and efficiency of diffusion mediated transport processes.” Journal of Physics A doi:10.1088/0305-4470/38/6/005
7. Hongler, M.-O.; Soner, H. M.; Streit, L. “Stochastic control for a class of random evolution models.” Applied Mathematics and Optimization doi:10.1007/s00245-003-0786-2
8. Hongler, M. O.; Blanchard, P. “Quantum random walk and piecewise deterministic evolutions.” Physical Review Letters doi:10.1103/PhysRevLett.92.120601
2003
1. Dusonchet, F. “Dynamic scheduling for production systems operating in a random environment.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-2825 [PhD thesis (director)]
2. Hongler, M.-O.; Dusonchet, F. “Continuous time restless bandits and dynamic scheduling for make-to-stock production.” IEEE Transactions on Robotics and Automation doi:10.1109/TRA.2003.819728
3. Dusonchet, F.; Hongler, M.-O. “Optimal hysteresis for deteriorating two-armed bandit problem with switching costs.” Automatica doi:10.1016/S0005-1098(03)00203-6
4. Hongler, M. O.; Lasser, T.; Evequoz, G. “Resonator stability subject to dynamic random-tilt aberration.” Journal of the Optical Society of America A doi:10.1364/JOSAA.20.000151
2002
1. Hongler, M.-O.; Filliger, R. “Mesoscopic derivation of a fundamental diagram of one-lane traffic.” Physics Letters A doi:10.1016/S0375-9601(02)01082-4
2. Blanchard, P.; Hongler, M.-O. “How many blocks can children pile up? Some analytical results.” Journal of the Physical Society of Japan doi:10.1143/jpsj.71.9
3. Dusonchet, F.; Hongler, M. O. “Dynamic scheduling of a flexible machine. Restless bandit formulation.” APII-JESA Journal Européen des Systèmes Automatisés
4. Dusonchet, F.; Hongler, M. O. “Ordonnancement dynamique d'une machine flexible: formulation en processus de bandits-manchots.” Journal Européen des Systèmes Automatisés
5. de Meneses, Y. L.; Hongler, M.-O.; Jacot, J. “The stochastic retina: an edge detector in the presence of noise.” [venue not specified in EPFL listing]
6. Hongler, M.; de Meneses, Y. L.; Beyeler, A.; Jacot, J. “The Resonant Retina: Exploiting Vibration Noise to Optimally Detect Edges in an Image.” IEEE Transactions on Pattern Analysis and Machine Intelligence doi:10.1109/TPAMI.2003.1227982
2001
1. Hongler, M.-O.; Dusonchet, F. “Optimal stopping and Gittins' indices for piecewise deterministic evolution process.” Discrete Event Dynamic Systems doi:10.1023/A:1011205206089
2. Hongler, M. O.; Ciprut, P. “Production indices obtained by a myopic policy for non-Markovian dynamics.” International Journal of Production Economics doi:10.1016/S0925-5273(01)00112-8
3. Hongler, M.-O.; Jacot, J.; Ney, P. “High Flexible Feeding of Components for Automatic Assembly: The SyFA module.” IEEE ETFA 2001 doi:10.1109/ETFA.2001.996421 [Conference paper]
4. Dusonchet, F.; Hongler, M. O. “Dynamic scheduling of a multi-items production operating on a make-to-stock basis.” IEEE ETFA 2001 doi:10.1109/ETFA.2001.996412 [Conference paper]
2000
1. Ciprut, P.; Hongler, M. O.; Salama, Y. “Fluctuations of the production output of transfer lines.” Journal of Intelligent Manufacturing doi:10.1023/A:1008942917166
2. Ciprut, P. “Production flexible en présence d'aléas: quelques modèles d'ordonnancement et de gestion des flux de produits.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-2130 [PhD thesis (director)]
1999
1. Hongler, M.-O. “Stopping and allocation indices for piecewise deterministic flow processes.” [venue not specified in EPFL listing]
2. Ciprut, P.; Hongler, M. O.; Salama, Y. “Random production flows: An exactly solvable fluid model.” In: Seminar on Stochastic Analysis, Random Fields and Applications (Ascona) doi:10.1007/978-3-0348-8681-9_9 [Book chapter / proceedings]
3. Ciprut, P.; Hongler, M. O.; Salama, Y. “On the variance of the production output of transfer lines.” IEEE Transactions on Robotics and Automation doi:10.1109/70.744600
1998
1. Salama, Y. “Variations stochastiques des flux en production industrielle.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-1871 [PhD thesis (director)]
2. Ciprut, P.; Hongler, M.-O.; Salama, Y. “Hedging point for non-Markovian piecewise deterministic production processes.” Discrete Event Dynamic Systems: Theory and Applications doi:10.1023/A:1008349216550
1997
1. Hongler, M. O. “Analytical results for the performance and the control of stochastic flow systems.” Journal of Intelligent Manufacturing doi:10.1023/A:1018514401057
1996
1. Hongler, M. O.; Salama, Y. “Semi-markov processes with phase-type waiting times.” ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik
1995
1. Hongler, M. O.; Lima, R. “A solvable nonlinear reaction-diffusion model.” Physics Letters A doi:10.1016/0375-9601(94)00990-7
2. Salama, Y.; Hongler, M. O. “Continuous versus discrete flow of parts in a production dipole: exact transient analysis.” IEEE ETFA 1995 doi:10.1109/ETFA.1995.496717 [Conference paper]
3. Hongler, M. O.; Badano, F.; Betemps, M.; Jutard, A. “Random exploration approach for automatic chamferless insertion.” International Journal of Robotics Research doi:10.1177/027836499501400206
1993
1. Hongler, M. O. “Stochastic dispersive transport: An excursion from statistical physics to automated production line design.” Applied Stochastic Models and Data Analysis doi:10.1002/asm.3150090207
2. Blanchard, P.; Hongler, M. O. “Probabilistic solutions of high order partial differential equations.” Physics Letters A doi:10.1016/0375-9601(93)90700-A
3. Gisin, N.; Salama, Y.; Hongler, M. O. “Polarization mode dispersion for single-mode fibers with polarization dependent losses.” Optics Communications doi:10.1016/0030-4018(93)90724-J
1992
1. Hongler, M. O. “Stochastic dispersive transport: An excursion from statistical physics to automated production line design.” [venue not specified in EPFL listing]
2. Hongler, M. O. “On the diffusion induced by alternating renewal processes.” Physica A: Statistical Mechanics and its Applications doi:10.1016/0378-4371(92)90333-L
3. Hongler, M. O. “Continuous time random walks with Erlangian pausing time distributions.” Physics Letters A doi:10.1016/0375-9601(92)90846-E
1991
1. Hongler, M. O. “Automated mobile robots under the influence of random disturbances.” Robotica doi:10.1017/S0263574700010171
2. Carreira, A.; Hongler, M. O.; Mendes, R. V. “Variational formulation and ergodic invariants.” Physics Letters A doi:10.1016/0375-9601(91)91044-E
1990
1. Hongler, M. O.; Streit, L. “Generalized master equations and the telegrapher's equation.” Physica A: Statistical Mechanics and its Applications doi:10.1016/0378-4371(90)90191-T
2. Hongler, M. O.; Streit, L. “A probabilistic connection between the Burger and a discrete Boltzmann-equation.” Europhysics Letters (EPL) doi:10.1209/0295-5075/12/3/001
3. Hongler, M. O. “Chaos in vibrotransportation.” In: Dynamics and Stochastic Processes: Theory and Applications (Workshop proceedings, Lisbon 1988) doi:10.1007/3-540-52347-2_29 [Book chapter / proceedings]
1989
1. Hongler, M. O. “Chaos in mechanical engineering devices.” Helvetica Physica Acta doi:10.5169/seals-116051
2. Hongler, M. O.; Cartier, P.; Flury, P. “Numerical study of a model of vibro-transporter.” Physics Letters A doi:10.1016/0375-9601(89)90654-3
3. Hongler, M. O.; Figour, J. “Periodic versus chaotic dynamics in vibratory feeders.” Helvetica Physica Acta doi:10.5169/seals-116028
1988
1. Hongler, M. O.; Streit, L. “On the origin of chaos in gearbox models.” Physica D: Nonlinear Phenomena doi:10.1016/0167-2789(88)90038-3
2. Hongler, M. O. “Dynamic derivation of the weak-scattering K-density.” Journal of the Optical Society of America A doi:10.1364/JOSAA.5.001649
1986
1. Hongler, M. O. “Supersymmetry and signal propagation in inhomogeneous transmission lines.” Physica A: Statistical Mechanics and its Applications doi:10.1016/0378-4371(86)90085-3
2. Hongler, M. O.; Desai, R. C. “Decay of unstable states in presence of fluctuations.” Helvetica Physica Acta doi:10.5169/seals-115702
1985
1. Hongler, M. O. “Exact solutions for a class of master equations.” Physics Letters A doi:10.1016/0375-9601(85)90344-5
1983
1. Hongler, M. O.; Desai, R. C. “Study of a class of models for self-organization: equilibrium analysis.” Journal of Statistical Physics doi:10.1007/BF01008958
1982
1. Hongler, M. O.; Zheng, W. M. “Exact solution for the diffusion in bistable potentials.” Journal of Statistical Physics doi:10.1007/BF01020789
2. Hongler, M. O.; Zheng, W. M. “Exact results for the diffusion in a class of asymmetric bistable potentials.” Journal of Mathematical Physics doi:10.1063/1.525684
3. Hongler, M. O. “Diffusion in a class of double-well potentials – exact results.” Physics Letters A doi:10.1016/0375-9601(82)90494-7
1981
1. Hongler, M. O. “Study of a class of non-linear stochastic processes: boomerang behaviour of the mean path.” Physica D: Nonlinear Phenomena doi:10.1016/0167-2789(81)90014-2
1979
1. Hongler, M. O. “Exact solutions of a class of non-linear Fokker-Planck equations.” Physics Letters A doi:10.1016/0375-9601(79)90256-1
2. Hongler, M. O. “Exact time dependent probability density for a non-linear non-Markovian stochastic process.” Helvetica Physica Acta doi:10.5169/seals-115031
1978
1. Hongler, M. O.; Ryter, D. M. “Hard mode stationary states generated by fluctuations.” Zeitschrift für Physik B Condensed Matter and Quanta doi:10.1007/BF01352359
1975
1. Enz, C. P.; Hongler, M. O.; Quachthi, C. V. “Stability of linear-chains with 3rd-order anharmonicity.” Helvetica Physica Acta
Education
Theoretical Physics
| Statistical mechanics1975 – 1981 Univesity Geneva
Infoscience
2024
Nonlinear Economic State Equilibria via van der Waals Modeling
Entropy. 2024. DOI : 10.3390/e26090727.AN EXACT BANDIT MODEL FOR THE RISK-VOLATILITY TRADEOFF
Journal Of Dynamics And Games. 2024. DOI : 10.3934/jdg.2024011.Stochastic pairwise preference convergence in Bayesian agents
Physical Review E. 2024. DOI : 10.1103/PhysRevE.109.054106.2023
Can one hear the shape of a target zone?
Journal of Mathematical Economics. 2023. DOI : 10.1016/j.jmateco.2023.102852.2022
Cauchy Processes, Dissipative Benjamin–Ono Dynamics and Fat-Tail Decaying Solitons
Fractal and Fractional. 2022. DOI : 10.3390/fractalfract6010015.2021
Opinion formation dynamics - Swift collective disillusionment triggered by unmet expectations
Physica A-Statistical Mechanics And Its Applications. 2021. DOI : 10.1016/j.physa.2021.125797.How Chaotic Dynamics Drive a Vintage Grill-Room Spit
2021. 13th Chaotic Modeling and Simulation International Conference, Florence, ITALY, 2020-06-09 - 2020-06-12. p. 695 - 720. DOI : 10.1007/978-3-030-70795-8_50.Brownian Swarm Dynamics and Burgers’ Equation with Higher Order Dispersion
Symmetry. 2021. DOI : 10.3390/sym13010057.2020
Mean-Field Games And Swarms Dynamics In Gaussian And Non-Gaussian Environments
Journal Of Dynamics And Games. 2020. DOI : 10.3934/jdg.2020001.Increasing risk: Dynamic mean-preserving spreads
Journal of Mathematical Economics. 2020. DOI : 10.1016/j.jmateco.2018.11.003.2019
Imitation, Proximity, and Growth - A Collective Swarm Dynamics Approach
Advances in Complex Systems. 2019. DOI : 10.1142/S0219525919500115.On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications
Methodoly and Computing in Applied Probability. 2019. DOI : 10.1007/s11009-017-9566-3.2017
Unraveling Brittle-Fracture Statistics from Intermittent Patterns Formed During Femtosecond Laser Exposure
Physical Review Applied. 2017. DOI : 10.1103/PhysRevApplied.8.054013.2016
Control of agent swarms in random environments
Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-6946.Intearcting Brownian Swarms: Some Analytical Results
Entropy. 2016. DOI : 10.3390/e18010027.2015
Exact soliton-like probability measures for interacting jump processes
The Mathematical Scientist. 2015.Transition and self-healing process between chaotic and self-organized patterns observed during femtosecond laser writing
Optics Express. 2015. DOI : 10.1364/OE.23.016993.2014
The estimation problem and heterogenous swarms of autonomous agents
2014. SMTDA 2014 - Stochastic Modeling Techniques and Data Analysis International Conference, Lisbon, Portugal, June 2014.Decentralized Self-Selection of Swarm Trajectories: From Dynamical Systems to Robotic Implementation
Swarm Intelligence. 2014. DOI : 10.1007/s11721-014-0101-7.Soft Control of Self-organized Locally Interacting Brownian Planar Agents
Computer Aided Systems Theory - EUROCAST 2013; springer, 2014. p. 45 - 52.Local versus nonlocal barycenttic interactions in 1 D agent dynamics
Mathematical Biosciences and Engineering. 2014. DOI : 10.3934/rnbe.2014.11.303.2013
Soft control of swarms: Analytical approach
2013. ICAART 2013 - 5th international conference on agents and artificial intelligence, Barcelona (Spain), 2013-02-16. p. 147 - 153.On Stochastic Processes Driven by Ballistic Noise Sources
Contemporary Topics in Mathematics and Statistics with Applications; New Dehli: Asian Books Private Limited, 2013. p. 1 - 29.Self-Organized Mixed Canonic-Disipative Dynamics for Brownian Planar Agents
2013. EUROCAST 2013 - International Conference on Computer Aided Systems Theory, Las Palmas de Gran Canaria, Spain, February 2013. p. 45 - 52.Self-shaping attractors for coupled limit cycle oscillators
Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering; Springer, 2013. p. 97 - 115.self-organized mixed canonical-dissipative dynamics for Brownian planar agents
Cybernetics and Physics. 2013.Time-Delayed Interactions in Networks of Self-Adapting Hopf Oscillators
ISRN Mathematical Analysis. 2013. DOI : 10.1155/2013/816353.Super-Diffusive Noise Source in Asset Dynamics
Journal Mathematical finance. 2013. DOI : 10.4236/jmf.2013.31004.2012
Networks of Self-Adaptive Dynamical Systems
Ima Journal Of Applied Mathematics. 2012. DOI : 10.1093/imamat/hxs057.Spatio-Temporal Patterns for a Generalized Innovation Diffusion Model
Theoretical Economic Letters. 2012. DOI : 10.4236/tel.2012.21001.2011
Femtosecond-laser generation of self-organized bubble patterns in fused silica
Optics Express. 2011. DOI : 10.1364/OE.19.006807.Ultra-fast writing of self-organized bubble networks using femtosecond laser exposure in the cumulative regime
2011. 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011. DOI : 10.1109/CLEOE.2011.5942813.Networks of Self-Adaptive Dynamical Systems
Lausanne, EPFL, 2011. DOI : 10.5075/epfl-thesis-5221.Self-Adaptive Attractor-Shaping for Oscillators Networks
2011. Third International Workshop on nonlinear Dynamics and Synchronization and Sixteenth International Symposium on Theoretical Electrical Engineering, Klagenfurt, Österreich, July 25-27, 2011.2010
Parametric Resonance in Time-Dependent Networks of Hopf Oscillators
2010. European Conference on Complex Systems (ECCS'10), Lisboa, Portugal, September 13-17, 2010.Hyperbolic angular statistics for globally coupled oscillators
Europhysics Letters - European Physical Society Letters (EPL). 2010. DOI : 10.1209/0295-5075/89/10001.Centralized versus decentralized control - A solvable stylized model in transportation
PHYSICA A. 2010. DOI : 10.1016/j.physa.2010.05.047.Agent-Based Routing in Queueing Systems
Lausanne, EPFL, 2010. DOI : 10.5075/epfl-thesis-4598.2009
Noise induced temporal patterns in populations of globally coupled oscillators
2009. Second International Workshop on Nonlinear Dynamics and Synchronization (INDS'09), Klagenfurt, Österreich, July 20-21, 2009. p. 194 - 197. DOI : 10.1109/INDS.2009.5227997.Multi-Agent Adaptive Mechanism Leading to Optimal Real-Time Load Sharing
2009. MATHMOD 2009, Vienna, 2009, Vienna, February 11-13, 2009.Networks of limit cycle oscillators with parametric learning capability
Recent Advances in Nonlinear Dynamics and Synchronization; Springer, 2009. p. 17 - 48.Circulation of Autonomous Agents in Production and Service Networks
International Journal of Production Economics. 2009. DOI : 10.1016/j.ijpe.2008.01.012.Networks of mixed canonical-dissipative systems and dynamic hebbian learning
International Journal of Computational Intelligence Systems. 2009. DOI : 10.1080/18756891.2009.9727649.2008
Cooperative Dynamics of Loyal Customers in Queueing Networks
Journal of Systems Science and Systems Engineering. 2008. DOI : 10.1007/s11518-008-5078-6.On a super-diffusive, nonlinear birth and death process
Physics Letters A. 2008. DOI : 10.1016/j.physleta.2008.01.082.A Connection Between an Exacltly Solvable Stochastic Optimal Control Problem and a Nonlinear Reaction Diffuison Equation
Journal of Optimization Theory and Applications. 2008. DOI : 10.1007/s10957-007-9346-2.Weariness and Loyalty Loss in Recurrent Service Models
2008. MOSIM'08, Paris, 2008, Paris, April 2008.Market Sharing Dynamics Between Two Service Providers
European Journal of Operational Research. 2008. DOI : 10.1016/j.ejor.2007.06.018.Networks of Mixed Canonic-Dissipative Systems and Dynamic Hebbian Learning
2008. First International Workshop on Nonlinear Dynamics and Synchronization (INDS'08), Klagenfurt, Österreich, July 18-19, 2008. p. 220 - 224.2007
Cooperative dynamics of loyal customers in queueing networks
2007. ICSSSM'06: 2006 International Conference on Service Systems and Service Management. p. 996 - 1001. DOI : 10.1109/icsssm.2006.320780.Modeling Human activity in the spirit of Barabasi's queueing systems
Physical Review E. 2007. DOI : 10.1103/PhysRevE.75.026102.Market Partition in a Dynamic Linear City Game Model
2007. EURO XXII, Prague, 2007, Prague, July 2007.Explicit Gittins' Indices for a Class of Superdiffusive Processes
Journal of Applied Probability. 2007. DOI : 10.1239/jap/1183667421.2006
Priority index heuristic for multi-armed bandit problems with set-up costs and/or set-up time delays
Internationa Journal of Computer Integrating Manufacturing. 2006. DOI : 10.1080/03081070500066062.An exact solution to a Kolmogorov type model for two interacting populations
mathematical scientist (the). 2006.Soluble models for dynamics driven by super-diffusive noise
Physica A. 2006. DOI : 10.1016/j.physa.2006.02.036.2005
Syphon dynamics - a soluble model of multi-agents cooperative behavior
Europhysics Letters - European Physical Society Letters (EPL). 2005. DOI : 10.1209/epl/i2004-10462-x.Optimal threshold control for failure-prone tandem production systems
IIE Transactions. 2005. DOI : 10.1080/07408170590969870.From car traffic to production flows : a guided tour through solvable stochastic transport processes
Lausanne, EPFL, 2005. DOI : 10.5075/epfl-thesis-3247.Cooperative Flow dynamics in production lines with buffer level dependent production rates
European Journal of operations research. 2005. DOI : 10.1016/j.ejor.2004.03.011.2004
An elementary model for customer fidelity
2004.Relative entropy and Efficiency of diffusion mediated transport processes
Journal of Physics A. 2004. DOI : 10.1088/0305-4470/38/6/005.Quantum random walk and piecewise deterministic evolutions
Physical Review Letters. 2004. DOI : 10.1103/PhysRevLett.92.120601.Stochastic Control for a Class of Random Evolution Models
Applied Mathematics and Optimization. 2004. DOI : 10.1007/s00245-003-0786-2.Supersymmetry in random two velocity processes
Physica A. 2004. DOI : 10.1016/j.physa.2003.09.048.Self-organization of critical behavior in controlled general queueing models
Physics Letters A. 2004. DOI : 10.1016/j.physleta.2004.01.015.The right time to sell a stock whose price is driven by Markovian noise
Annals of Applied Probability. 2004. DOI : 10.1214/105051604000000747.On the outflow process of N-stations merge systems for items with non-vanishing spacial extensions
2004.2003
Optimal Hysteresis for Deteriorating Two-armed Bandit Problem with Switching Costs
Automatica. 2003. DOI : 10.1016/S0005-1098(03)00203-6.Continuous time Restless Bandits and dynamic scheduling for make-to-stock production
IEEE Transactions on Robotics and Automation. 2003. DOI : 10.1109/TRA.2003.819728.Resonator stability subject to dynamic random-tilt aberration
Journal of the Optical Society of America a-Optics Image Science and Vision. 2003. DOI : 10.1364/JOSAA.20.000151.Dynamic scheduling for production systems operating in a random environment
Lausanne, EPFL, 2003. DOI : 10.5075/epfl-thesis-2825.2002
Mesoscopic derivation of a fundamental diagram of one-lane traffic
Physics Letters A. 2002. DOI : 10.1016/S0375-9601(02)01082-4.Dynamic scheduling of a flexible machine. Restless bandit formulation
APII-JESA Journal Europeen des Systemes Automatises. 2002.Ordonnancement dynamique d'une machine flexible Formulation en processus de Bandits-manchots
Journal Européen des Systèmes Automatisés. 2002.How many blocks can children pile up? Some analytical results
Journal of the Physical Society of Japan. 2002. DOI : 10.1143/jpsj.71.9.The stochastic retina: an edge detector in the presence of noise
2002.The Resonant Retina: Exploiting Vibration Noise to Optimally detect Edges in an Image
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. DOI : 10.1109/TPAMI.2003.1227982.2001
Optimal stoping and Gittins' indices for piecewise deterministic evolution process
Discrete Event Dynamic Systems. 2001. DOI : 10.1023/A:1011205206089.High Flexible Feeding of Components for Automatic Assembly. The SyFA module
2001. p. 613 - 621. DOI : 10.1109/ETFA.2001.996421.Dynamic scheduling of a multi-items production operating on a make-to-stock basis
2001. p. 549 - 552. DOI : 10.1109/ETFA.2001.996412.Production indices obtained by a myopic policy for non-markovian dynamics
International Journal of Production Economics. 2001. DOI : 10.1016/S0925-5273(01)00112-8.2000
Production flexible en présence d'aléas: quelques modèles d'ordonnancement et de gestion des flux de produits
Lausanne, EPFL, 2000. DOI : 10.5075/epfl-thesis-2130.Fluctuations of the production output of transfer lines
Journal of Intelligent Manufacturing. 2000. DOI : 10.1023/A:1008942917166.1999
Random production flows. An exactly solvable fluid model
1999. 2nd Seminar on Stochastic Analysis, Random Fields and Applications, Ctr stefano franscini, ascona, switzerland, Sep 16-21, 1996. p. 125 - 135. DOI : 10.1007/978-3-0348-8681-9_9.Stopping and allocation indices for piecewise deterministic flow processes
1999.On the variance of the production output of transfer lines
IEEE Transactions on Robotics and Automation. 1999. DOI : 10.1109/70.744600.1998
Variations stochastiques des flux en production industrielle
Lausanne, EPFL, 1998. DOI : 10.5075/epfl-thesis-1871.Hedging point for non-Markovian piecewise deterministic production processes
Discrete Event Dynamic Systems: Theory and Applications. 1998. DOI : 10.1023/A:1008349216550.1997
Analytical results for the performance and the control of stochastic flow systems
Journal of Intelligent Manufacturing. 1997. DOI : 10.1023/A:1018514401057.1996
Semi-markov processes with phase-type waiting times
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 1996.1995
A solvable nonlinear reaction-diffusion model
Physics Letters A. 1995. DOI : 10.1016/0375-9601(94)00990-7.Random exploration approach for automatic chamferless insertion
International Journal of Robotics Research. 1995. DOI : 10.1177/027836499501400206.Continuous versus discrete flow of parts in a production dipole. Exact transient analysis
1995. p. 167 - 173. DOI : 10.1109/ETFA.1995.496717.1993
Probabilistic solutions of high order partial differential equations
Physics Letters A. 1993. DOI : 10.1016/0375-9601(93)90700-A.Polarization mode dispersion for single-mode fibers with polarization dependent losses
Optics Communications. 1993. DOI : 10.1016/0030-4018(93)90724-J.Stochastic dispersive transport. An excursion from statistical physics to automated production line design
Applied Stochastic Models and Data Analysis. 1993. DOI : 10.1002/asm.3150090207.1992
On the diffusion induced by alternating renewal processes
Physica A: Statistical Mechanics and its Applications. 1992. DOI : 10.1016/0378-4371(92)90333-L.Continuous time random walks with Erlangian pausing time distributions
Physics Letters A. 1992. DOI : 10.1016/0375-9601(92)90846-E.Stochastic dispersive transport. An excursion from statistical physics to automated production line design
1992. p. 551 - 65.1991
Variational formulation and ergodic invariants
Physics Letters A. 1991. DOI : 10.1016/0375-9601(91)91044-E.Automated mobile robots under the influence of random disturbances
Robotica. 1991. DOI : 10.1017/S0263574700010171.1990
Chaos in vibrotransportation
1990. Dynamics and Stochastic Processes Theory and Applications Workshop, Lisbon, Portugal, 24-29 Oct. 1988. p. 142 - 164. DOI : 10.1007/3-540-52347-2_29.A PROBABILISTIC CONNECTION BETWEEN THE BURGER AND A DISCRETE BOLTZMANN-EQUATION
Europhysics Letters - European Physical Society Letters (EPL). 1990. DOI : 10.1209/0295-5075/12/3/001.Generalized master equations and the telegrapher's equation
Physica A: Statistical Mechanics and its Applications. 1990. DOI : 10.1016/0378-4371(90)90191-T.1989
CHAOS IN MECHANICAL ENGINEERING DEVICES
Helvetica Physica Acta. 1989. DOI : 10.5169/seals-116051.Periodic versus chaotic dynamics in vibratory feeders
Helvetica Physica Acta. 1989. DOI : 10.5169/seals-116028.Numerical study of a model of vibro-transporter
Physics Letters A. 1989. DOI : 10.1016/0375-9601(89)90654-3.1988
On the origin of chaos in gearbox models
Physica D: Nonlinear Phenomena. 1988. DOI : 10.1016/0167-2789(88)90038-3.DYNAMIC DERIVATION OF THE WEAK-SCATTERING K-DENSITY
Journal of the Optical Society of America a-Optics Image Science and Vision. 1988. DOI : 10.1364/josaa.5.001649.1986
Decay of unstable states in presence of fluctuations
Helvetica Physica Acta. 1986. DOI : 10.5169/seals-115702.Supersymmetry and signal propagation in inhomogeneous transmission lines
Physica A: Statistical Mechanics and its Applications. 1986. DOI : 10.1016/0378-4371(86)90085-3.1985
Exact solutions for a class of master equations
Physics Letters A. 1985. DOI : 10.1016/0375-9601(85)90344-5.1983
Study of a class of models for self-organization: equilibrium analysis
Journal of Statistical Physics. 1983. DOI : 10.1007/BF01008958.1982
Diffusion in a class of double-well potentials - exact results
Physics Letters A. 1982. DOI : 10.1016/0375-9601(82)90494-7.Exact solution for the diffusion in bistable potentials
Journal of Statistical Physics. 1982. DOI : 10.1007/BF01020789.Exact results for the diffusion in a class of asymmetric bistable potentials
Journal of Mathematical Physics. 1982. DOI : 10.1063/1.525684.1981
Study of a class of non-linear stochastic processes boomerang behaviour of the mean path
Physica D: Nonlinear Phenomena. 1981. DOI : 10.1016/0167-2789(81)90014-2.1979
Exact solutions of a class of non-linear Fokker-Planck equations
Physics Letters A. 1979. DOI : 10.1016/0375-9601(79)90256-1.Exact time dependent probability density for a non-linear non-Markovian stochastic process
Helvetica Physica Acta. 1979. DOI : 10.5169/seals-115031.1978
Hard mode stationary states generated by fluctuations
Zeitschrift für Physik B Condensed Matter and Quanta. 1978. DOI : 10.1007/BF01352359.1975
STABILITY OF LINEAR-CHAINS WITH 3RD-ORDER ANHARMONICITY
Helvetica Physica Acta. 1975.Teaching & PhD
Past EPFL PhD Students
Yves Salama, Philippe Ciprut, Fabrice Dusonchet, Roger Filliger, Olivier Gallay, Julio Rodriguez, Guillaume Adrien Sartoretti