Max-Olivier Hongler
Expertise
Applied Stochastic Processes
Nonlinear Dynamics
Mission
.
contact
BM 5.132
Tel 021 693 53 91
Master in Theoretical Physics (Uni-Geneva (1975)
Doctoral degree in Theoretical Physics (Uni-Geneva 1981)
Post-doctoral Positions (Theoretical Physics Uni-Austin (Texas), USA 1981-1982)
Post-doctoral Positions (Theoretical Physics Uni-Toronto, Canada, 1982-1983)
Premier assistant (Theoretical Physics Uni-Geneva 1984-1988)
Research associate (Micro-engineering EPFL 1989)
Investigator principal (Theoretical Physics Uni-Lisbonne, Portugal, 1989-1990)
Invited Professor (Theoretical Physics Uni-Bielefeld, Germany, 1991)
Scientific adjunct (Micro-engineering EPFL 1992- 1999)
Adjunct Professor (Micro-engineering EPFL 2000- 2016)
Honorary Professor (EPFL since 2016)
Doctoral degree in Theoretical Physics (Uni-Geneva 1981)
Post-doctoral Positions (Theoretical Physics Uni-Austin (Texas), USA 1981-1982)
Post-doctoral Positions (Theoretical Physics Uni-Toronto, Canada, 1982-1983)
Premier assistant (Theoretical Physics Uni-Geneva 1984-1988)
Research associate (Micro-engineering EPFL 1989)
Investigator principal (Theoretical Physics Uni-Lisbonne, Portugal, 1989-1990)
Invited Professor (Theoretical Physics Uni-Bielefeld, Germany, 1991)
Scientific adjunct (Micro-engineering EPFL 1992- 1999)
Adjunct Professor (Micro-engineering EPFL 2000- 2016)
Honorary Professor (EPFL since 2016)
Publications
2024
1. Hongler, M. O.; Gallay, O.; Hashemi, F. “Nonlinear Economic State Equilibria via van der Waals Modeling.” Entropy doi:10.3390/e26090727
2. Hongler, M.-O.; Rivier, R. “An exact bandit model for the risk-volatility tradeoff.” Journal of Dynamics and Games doi:10.3934/jdg.2024011
3. Hongler, M. “Stochastic pairwise preference convergence in Bayesian agents.” Physical Review E doi:10.1103/PhysRevE.109.054106
2023
1. Arcand, J.-L.; Kumar, S. H.; Hongler, M.-O.; Rinaldo, D. “Can one hear the shape of a target zone?.” Journal of Mathematical Economics doi:10.1016/j.jmateco.2023.102852
2022
1. Hongler, M.-O. “Cauchy Processes, Dissipative Benjamin–Ono Dynamics and Fat-Tail Decaying Solitons.” Fractal and Fractional doi:10.3390/fractalfract6010015
2021
1. Hashemi, F.; Gallay, O.; Hongler, M.-O. “Opinion formation dynamics – Swift collective disillusionment triggered by unmet expectations.” Physica A: Statistical Mechanics and its Applications doi:10.1016/j.physa.2021.125797
2. Rodriguez, J.; Hongler, M.-O. “How Chaotic Dynamics Drive a Vintage Grill-Room Spit.” 13th Chaotic Modeling and Simulation International Conference (Florence, 2020), in Springer proceedings doi:10.1007/978-3-030-70795-8_50 [Conference proceedings chapter]
3. Hongler, M.-O. “Brownian Swarm Dynamics and Burgers’ Equation with Higher Order Dispersion.” Symmetry doi:10.3390/sym13010057
2020
1. Hongler, M.-O. “Mean-Field Games and Swarms Dynamics in Gaussian and Non-Gaussian Environments.” Journal of Dynamics and Games doi:10.3934/jdg.2020001
2. Arcand, J.-L.; Hongler, M.-O.; Rinaldo, D. “Increasing risk: Dynamic mean-preserving spreads.” Journal of Mathematical Economics doi:10.1016/j.jmateco.2018.11.003
2019
1. Gallay, O.; Hashemi, F.; Hongler, M.-O. “Imitation, Proximity, and Growth – A Collective Swarm Dynamics Approach.” Advances in Complex Systems doi:10.1142/S0219525919500115
2. Hongler, M.-O.; Filliger, R. “On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications.” Methodology and Computing in Applied Probability doi:10.1007/s11009-017-9566-3
2017
1. Athanasiou, C. E.; Hongler, M.-O.; Bellouard, Y. “Unraveling Brittle-Fracture Statistics from Intermittent Patterns Formed During Femtosecond Laser Exposure.” Physical Review Applied doi:10.1103/PhysRevApplied.8.054013
2016
1. Sartoretti, G. A.; Hongler, M.-O. “Interacting Brownian Swarms: Some Analytical Results.” Entropy doi:10.3390/e18010027
2. Sartoretti, G. A. “Control of agent swarms in random environments.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-6946 [PhD thesis (director)]
2015
1. Groothoff, N.; Hongler, M.-O.; Kazansky, P.; Bellouard, Y. “Transition and self-healing process between chaotic and self-organized patterns observed during femtosecond laser writing.” Optics Express doi:10.1364/OE.23.016993
2. Hongler, M.-O. “Exact soliton-like probability measures for interacting jump processes.” The Mathematical Scientist
2014
1. Hongler, M.-O.; Filliger, R.; Gallay, O. “Local versus nonlocal barycentric interactions in 1D agent dynamics.” Mathematical Biosciences and Engineering doi:10.3934/rnbe.2014.11.303
2. Sartoretti, G. A.; Hongler, M.-O.; Elias de Oliveira, M.; Mondada, F. “Decentralized Self-Selection of Swarm Trajectories: From Dynamical Systems to Robotic Implementation.” Swarm Intelligence doi:10.1007/s11721-014-0101-7
3. Sartoretti, G.; Hongler, M.-O. “The estimation problem and heterogeneous swarms of autonomous agents.” SMTDA 2014 – Stochastic Modeling Techniques and Data Analysis (Lisbon, June 2014) [Conference paper]
4. Sartoretti, G. A.; Hongler, M.-O. “Soft Control of Self-organized Locally Interacting Brownian Planar Agents.” Computer Aided Systems Theory – EUROCAST 2013 (Springer) [Book chapter / conference proceedings]
2013
1. Hongler, M.-O. “Super-Diffusive Noise Source in Asset Dynamics.” Journal of Mathematical Finance doi:10.4236/jmf.2013.31004
2. Sartoretti, G. A.; Hongler, M.-O. “Self-organized mixed canonical-dissipative dynamics for Brownian planar agents.” Cybernetics and Physics
3. Rodriguez, J.; Hongler, M.-O.; Blanchard, P. “Time-Delayed Interactions in Networks of Self-Adapting Hopf Oscillators.” ISRN Mathematical Analysis doi:10.1155/2013/816353
4. Sartoretti, G.; Hongler, M.-O. “Self-Organized Mixed Canonic–Dissipative Dynamics for Brownian Planar Agents.” EUROCAST 2013 – International Conference on Computer Aided Systems Theory (Las Palmas, Feb 2013) [Conference paper]
5. Hongler, M.-O.; Filliger, R.; Blanchard, P.; Rodriguez, J. “On Stochastic Processes Driven by Ballistic Noise Sources.” In: Contemporary Topics in Mathematics and Statistics with Applications (Asian Books, New Delhi) [Book chapter]
6. Sartoretti, G. A.; Hongler, M.-O. “Soft control of swarms: Analytical approach.” ICAART 2013 – 5th International Conference on Agents and Artificial Intelligence (Barcelona, Feb 2013) [Conference paper]
7. Rodriguez, J.; Hongler, M.-O.; Blanchard, P. “Self-shaping attractors for coupled limit cycle oscillators.” In: Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering (Springer) [Book chapter]
2012
1. Hashemi, F.; Hongler, M.-O.; Gallay, O. “Spatio-Temporal Patterns for a Generalized Innovation Diffusion Model.” Theoretical Economic Letters doi:10.4236/tel.2012.21001
2. Rodriguez, J.; Hongler, M.-O. “Networks of Self-Adaptive Dynamical Systems.” IMA Journal of Applied Mathematics doi:10.1093/imamat/hxs057
2011
1. Bellouard, Y.; Hongler, M.-O. “Femtosecond-laser generation of self-organized bubble patterns in fused silica.” Optics Express doi:10.1364/OE.19.006807
2. Rodriguez, J.; Hongler, M.-O.; Blanchard, P. “Self-Adaptive Attractor-Shaping for Oscillators Networks.” Third International Workshop on Nonlinear Dynamics and Synchronization & 16th International Symposium on Theoretical Electrical Engineering (Klagenfurt, July 2011) [Workshop paper]
3. Bellouard, Y.; Hongler, M. O. “Ultra-fast writing of self-organized bubble networks using femtosecond laser exposure in the cumulative regime.” CLEO EUROPE/EQEC 2011 doi:10.1109/CLEOE.2011.5942813 [Conference paper]
4. Rodriguez, J. “Networks of Self-Adaptive Dynamical Systems.” PhD thesis, EPFL (director: M.-O. Hongler; co-director: P. Blanchard) doi:10.5075/epfl-thesis-5221 [PhD thesis (director)]
2010
1. Rodriguez, J.; Hongler, M.-O. “Parametric Resonance in Time-Dependent Networks of Hopf Oscillators.” European Conference on Complex Systems (ECCS'10), Lisbon, Sept 2010 [Conference paper]
2. Hongler, M.-O.; Filliger, R.; Blanchard, P. “Hyperbolic angular statistics for globally coupled oscillators.” Europhysics Letters (EPL) doi:10.1209/0295-5075/89/10001
3. Gallay, O. “Agent-Based Routing in Queueing Systems.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-4598 [PhD thesis (director)]
4. Hongler, M.-O.; Gallay, O.; Hülsmann, M.; Cordes, P.; Colmorn, R. “Centralized versus decentralized control: A solvable stylized model in transportation.” Physica A doi:10.1016/j.physa.2010.05.047
2009
1. Gallay, O.; Hongler, M.-O. “Multi-Agent Adaptive Mechanism Leading to Optimal Real-Time Load Sharing.” MATHMOD 2009 (Vienna, Feb 2009) [Conference paper]
2. Rodriguez, J.; Hongler, M.-O. “Networks of limit cycle oscillators with parametric learning capability.” In: Recent Advances in Nonlinear Dynamics and Synchronization (Springer) [Book chapter]
3. Hongler, M.-O.; Filliger, R.; Blanchard, P.; Rodriguez, J. “Noise induced temporal patterns in populations of globally coupled oscillators.” INDS'09 – 2nd International Workshop on Nonlinear Dynamics and Synchronization (Klagenfurt, July 2009) doi:10.1109/INDS.2009.5227997 [Workshop paper]
4. Rodriguez, J.; Hongler, M.-O. “Networks of mixed canonical-dissipative systems and dynamic hebbian learning.” International Journal of Computational Intelligence Systems doi:10.1080/18756891.2009.9727649
5. Gallay, O.; Hongler, M.-O. “Circulation of Autonomous Agents in Production and Service Networks.” International Journal of Production Economics doi:10.1016/j.ijpe.2008.01.012
2008
1. Gallay, O.; Hongler, M.-O. “Weariness and Loyalty Loss in Recurrent Service Models.” MOSIM'08 (Paris, April 2008) [Conference paper]
2. Hongler, M.-O.; Parthasarathy, P. “On a super-diffusive, nonlinear birth and death process.” Physics Letters A doi:10.1016/j.physleta.2008.01.082
3. Filliger, R.; Hongler, M.-O.; Streit, L. “A Connection Between an Exactly Solvable Stochastic Optimal Control Problem and a Nonlinear Reaction Diffusion Equation.” Journal of Optimization Theory and Applications doi:10.1007/s10957-007-9346-2
4. Gallay, O.; Hongler, M.-O. “Market Sharing Dynamics Between Two Service Providers.” European Journal of Operational Research doi:10.1016/j.ejor.2007.06.018
5. Gallay, O.; Hongler, M.-O. “Cooperative Dynamics of Loyal Customers in Queueing Networks.” Journal of Systems Science and Systems Engineering doi:10.1007/s11518-008-5078-6
6. Rodriguez, J.; Hongler, M.-O. “Networks of Mixed Canonic–Dissipative Systems and Dynamic Hebbian Learning.” INDS'08 – 1st International Workshop on Nonlinear Dynamics and Synchronization (Klagenfurt, July 2008) [Workshop paper]
2007
1. Gallay, O.; Hongler, M. O. “Cooperative dynamics of loyal customers in queueing networks.” ICSSSM 2006 – International Conference on Service Systems and Service Management (published 2007) doi:10.1109/ICSSSM.2006.320780 [Conference paper]
2. Gallay, O.; Hongler, M.-O. “Market Partition in a Dynamic Linear City Game Model.” EURO XXII (Prague, July 2007) [Conference paper]
3. Filliger, R.; Hongler, M.-O. “Explicit Gittins' Indices for a Class of Superdiffusive Processes.” Journal of Applied Probability doi:10.1239/jap/1183667421
4. Blanchard, P.; Hongler, M.-O. “Modeling human activity in the spirit of Barabasi's queueing systems.” Physical Review E doi:10.1103/PhysRevE.75.026102
2006
1. Dusonchet, F.; Hongler, M.-O. “Priority index heuristic for multi-armed bandit problems with set-up costs and/or set-up time delays.” International Journal of Computer Integrated Manufacturing doi:10.1080/03081070500066062
2. Hongler, M. O.; Filliger, R.; Blanchard, P. “Soluble models for dynamics driven by super-diffusive noise.” Physica A doi:10.1016/j.physa.2006.02.036
3. Hongler, M.-O.; Filliger, R. “An exact solution to a Kolmogorov type model for two interacting populations.” The Mathematical Scientist
2005
1. Filliger, R.; Hongler, M. O. “Optimal threshold control for failure-prone tandem production systems.” IIE Transactions doi:10.1080/07408170590969870
2. Hongler, M. O.; Filliger, R. “Syphon dynamics: a soluble model of multi-agents cooperative behavior.” Europhysics Letters (EPL) doi:10.1209/epl/i2004-10462-x
3. Filliger, R. “From car traffic to production flows: a guided tour through solvable stochastic transport processes.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-3247 [PhD thesis (director)]
4. Filliger, R.; Hongler, M. O. “Cooperative flow dynamics in production lines with buffer level dependent production rates.” European Journal of Operational Research doi:10.1016/j.ejor.2004.03.011
2004
1. Hongler, M. O.; Cheikhrouhou, N.; Glardon, R. “An elementary model for customer fidelity.” [venue not specified in EPFL listing]
2. Filliger, R.; Hongler, M. O. “Supersymmetry in random two velocity processes.” Physica A doi:10.1016/j.physa.2003.09.048
3. Blanchard, P.; Hongler, M. O. “Self-organization of critical behavior in controlled general queueing models.” Physics Letters A doi:10.1016/j.physleta.2004.01.015
4. Dalang, R. C.; Hongler, M.-O. “The right time to sell a stock whose price is driven by Markovian noise.” Annals of Applied Probability doi:10.1214/105051604000000747
5. Filliger, R.; Hongler, M. O. “On the outflow process of N-stations merge systems for items with non-vanishing spatial extensions.” [venue not specified in EPFL listing]
6. Filliger, R.; Hongler, M. O. “Relative entropy and efficiency of diffusion mediated transport processes.” Journal of Physics A doi:10.1088/0305-4470/38/6/005
7. Hongler, M.-O.; Soner, H. M.; Streit, L. “Stochastic control for a class of random evolution models.” Applied Mathematics and Optimization doi:10.1007/s00245-003-0786-2
8. Hongler, M. O.; Blanchard, P. “Quantum random walk and piecewise deterministic evolutions.” Physical Review Letters doi:10.1103/PhysRevLett.92.120601
2003
1. Dusonchet, F. “Dynamic scheduling for production systems operating in a random environment.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-2825 [PhD thesis (director)]
2. Hongler, M.-O.; Dusonchet, F. “Continuous time restless bandits and dynamic scheduling for make-to-stock production.” IEEE Transactions on Robotics and Automation doi:10.1109/TRA.2003.819728
3. Dusonchet, F.; Hongler, M.-O. “Optimal hysteresis for deteriorating two-armed bandit problem with switching costs.” Automatica doi:10.1016/S0005-1098(03)00203-6
4. Hongler, M. O.; Lasser, T.; Evequoz, G. “Resonator stability subject to dynamic random-tilt aberration.” Journal of the Optical Society of America A doi:10.1364/JOSAA.20.000151
2002
1. Hongler, M.-O.; Filliger, R. “Mesoscopic derivation of a fundamental diagram of one-lane traffic.” Physics Letters A doi:10.1016/S0375-9601(02)01082-4
2. Blanchard, P.; Hongler, M.-O. “How many blocks can children pile up? Some analytical results.” Journal of the Physical Society of Japan doi:10.1143/jpsj.71.9
3. Dusonchet, F.; Hongler, M. O. “Dynamic scheduling of a flexible machine. Restless bandit formulation.” APII-JESA Journal Européen des Systèmes Automatisés
4. Dusonchet, F.; Hongler, M. O. “Ordonnancement dynamique d'une machine flexible: formulation en processus de bandits-manchots.” Journal Européen des Systèmes Automatisés
5. de Meneses, Y. L.; Hongler, M.-O.; Jacot, J. “The stochastic retina: an edge detector in the presence of noise.” [venue not specified in EPFL listing]
6. Hongler, M.; de Meneses, Y. L.; Beyeler, A.; Jacot, J. “The Resonant Retina: Exploiting Vibration Noise to Optimally Detect Edges in an Image.” IEEE Transactions on Pattern Analysis and Machine Intelligence doi:10.1109/TPAMI.2003.1227982
2001
1. Hongler, M.-O.; Dusonchet, F. “Optimal stopping and Gittins' indices for piecewise deterministic evolution process.” Discrete Event Dynamic Systems doi:10.1023/A:1011205206089
2. Hongler, M. O.; Ciprut, P. “Production indices obtained by a myopic policy for non-Markovian dynamics.” International Journal of Production Economics doi:10.1016/S0925-5273(01)00112-8
3. Hongler, M.-O.; Jacot, J.; Ney, P. “High Flexible Feeding of Components for Automatic Assembly: The SyFA module.” IEEE ETFA 2001 doi:10.1109/ETFA.2001.996421 [Conference paper]
4. Dusonchet, F.; Hongler, M. O. “Dynamic scheduling of a multi-items production operating on a make-to-stock basis.” IEEE ETFA 2001 doi:10.1109/ETFA.2001.996412 [Conference paper]
2000
1. Ciprut, P.; Hongler, M. O.; Salama, Y. “Fluctuations of the production output of transfer lines.” Journal of Intelligent Manufacturing doi:10.1023/A:1008942917166
2. Ciprut, P. “Production flexible en présence d'aléas: quelques modèles d'ordonnancement et de gestion des flux de produits.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-2130 [PhD thesis (director)]
1999
1. Hongler, M.-O. “Stopping and allocation indices for piecewise deterministic flow processes.” [venue not specified in EPFL listing]
2. Ciprut, P.; Hongler, M. O.; Salama, Y. “Random production flows: An exactly solvable fluid model.” In: Seminar on Stochastic Analysis, Random Fields and Applications (Ascona) doi:10.1007/978-3-0348-8681-9_9 [Book chapter / proceedings]
3. Ciprut, P.; Hongler, M. O.; Salama, Y. “On the variance of the production output of transfer lines.” IEEE Transactions on Robotics and Automation doi:10.1109/70.744600
1998
1. Salama, Y. “Variations stochastiques des flux en production industrielle.” PhD thesis, EPFL (director: M.-O. Hongler) doi:10.5075/epfl-thesis-1871 [PhD thesis (director)]
2. Ciprut, P.; Hongler, M.-O.; Salama, Y. “Hedging point for non-Markovian piecewise deterministic production processes.” Discrete Event Dynamic Systems: Theory and Applications doi:10.1023/A:1008349216550
1997
1. Hongler, M. O. “Analytical results for the performance and the control of stochastic flow systems.” Journal of Intelligent Manufacturing doi:10.1023/A:1018514401057
1996
1. Hongler, M. O.; Salama, Y. “Semi-markov processes with phase-type waiting times.” ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik
1995
1. Hongler, M. O.; Lima, R. “A solvable nonlinear reaction-diffusion model.” Physics Letters A doi:10.1016/0375-9601(94)00990-7
2. Salama, Y.; Hongler, M. O. “Continuous versus discrete flow of parts in a production dipole: exact transient analysis.” IEEE ETFA 1995 doi:10.1109/ETFA.1995.496717 [Conference paper]
3. Hongler, M. O.; Badano, F.; Betemps, M.; Jutard, A. “Random exploration approach for automatic chamferless insertion.” International Journal of Robotics Research doi:10.1177/027836499501400206
1993
1. Hongler, M. O. “Stochastic dispersive transport: An excursion from statistical physics to automated production line design.” Applied Stochastic Models and Data Analysis doi:10.1002/asm.3150090207
2. Blanchard, P.; Hongler, M. O. “Probabilistic solutions of high order partial differential equations.” Physics Letters A doi:10.1016/0375-9601(93)90700-A
3. Gisin, N.; Salama, Y.; Hongler, M. O. “Polarization mode dispersion for single-mode fibers with polarization dependent losses.” Optics Communications doi:10.1016/0030-4018(93)90724-J
1992
1. Hongler, M. O. “Stochastic dispersive transport: An excursion from statistical physics to automated production line design.” [venue not specified in EPFL listing]
2. Hongler, M. O. “On the diffusion induced by alternating renewal processes.” Physica A: Statistical Mechanics and its Applications doi:10.1016/0378-4371(92)90333-L
3. Hongler, M. O. “Continuous time random walks with Erlangian pausing time distributions.” Physics Letters A doi:10.1016/0375-9601(92)90846-E
1991
1. Hongler, M. O. “Automated mobile robots under the influence of random disturbances.” Robotica doi:10.1017/S0263574700010171
2. Carreira, A.; Hongler, M. O.; Mendes, R. V. “Variational formulation and ergodic invariants.” Physics Letters A doi:10.1016/0375-9601(91)91044-E
1990
1. Hongler, M. O.; Streit, L. “Generalized master equations and the telegrapher's equation.” Physica A: Statistical Mechanics and its Applications doi:10.1016/0378-4371(90)90191-T
2. Hongler, M. O.; Streit, L. “A probabilistic connection between the Burger and a discrete Boltzmann-equation.” Europhysics Letters (EPL) doi:10.1209/0295-5075/12/3/001
3. Hongler, M. O. “Chaos in vibrotransportation.” In: Dynamics and Stochastic Processes: Theory and Applications (Workshop proceedings, Lisbon 1988) doi:10.1007/3-540-52347-2_29 [Book chapter / proceedings]
1989
1. Hongler, M. O. “Chaos in mechanical engineering devices.” Helvetica Physica Acta doi:10.5169/seals-116051
2. Hongler, M. O.; Cartier, P.; Flury, P. “Numerical study of a model of vibro-transporter.” Physics Letters A doi:10.1016/0375-9601(89)90654-3
3. Hongler, M. O.; Figour, J. “Periodic versus chaotic dynamics in vibratory feeders.” Helvetica Physica Acta doi:10.5169/seals-116028
1988
1. Hongler, M. O.; Streit, L. “On the origin of chaos in gearbox models.” Physica D: Nonlinear Phenomena doi:10.1016/0167-2789(88)90038-3
2. Hongler, M. O. “Dynamic derivation of the weak-scattering K-density.” Journal of the Optical Society of America A doi:10.1364/JOSAA.5.001649
1986
1. Hongler, M. O. “Supersymmetry and signal propagation in inhomogeneous transmission lines.” Physica A: Statistical Mechanics and its Applications doi:10.1016/0378-4371(86)90085-3
2. Hongler, M. O.; Desai, R. C. “Decay of unstable states in presence of fluctuations.” Helvetica Physica Acta doi:10.5169/seals-115702
1985
1. Hongler, M. O. “Exact solutions for a class of master equations.” Physics Letters A doi:10.1016/0375-9601(85)90344-5
1983
1. Hongler, M. O.; Desai, R. C. “Study of a class of models for self-organization: equilibrium analysis.” Journal of Statistical Physics doi:10.1007/BF01008958
1982
1. Hongler, M. O.; Zheng, W. M. “Exact solution for the diffusion in bistable potentials.” Journal of Statistical Physics doi:10.1007/BF01020789
2. Hongler, M. O.; Zheng, W. M. “Exact results for the diffusion in a class of asymmetric bistable potentials.” Journal of Mathematical Physics doi:10.1063/1.525684
3. Hongler, M. O. “Diffusion in a class of double-well potentials – exact results.” Physics Letters A doi:10.1016/0375-9601(82)90494-7
1981
1. Hongler, M. O. “Study of a class of non-linear stochastic processes: boomerang behaviour of the mean path.” Physica D: Nonlinear Phenomena doi:10.1016/0167-2789(81)90014-2
1979
1. Hongler, M. O. “Exact solutions of a class of non-linear Fokker-Planck equations.” Physics Letters A doi:10.1016/0375-9601(79)90256-1
2. Hongler, M. O. “Exact time dependent probability density for a non-linear non-Markovian stochastic process.” Helvetica Physica Acta doi:10.5169/seals-115031
1978
1. Hongler, M. O.; Ryter, D. M. “Hard mode stationary states generated by fluctuations.” Zeitschrift für Physik B Condensed Matter and Quanta doi:10.1007/BF01352359
1975
1. Enz, C. P.; Hongler, M. O.; Quachthi, C. V. “Stability of linear-chains with 3rd-order anharmonicity.” Helvetica Physica Acta
Education
Theoretical Physics
| Statistical mechanics1975 – 1981 Univesity Geneva
Infoscience
2024
Nonlinear Economic State Equilibria via van der Waals Modeling
Entropy. 2024. DOI : 10.3390/e26090727.AN EXACT BANDIT MODEL FOR THE RISK-VOLATILITY TRADEOFF
Journal Of Dynamics And Games. 2024. DOI : 10.3934/jdg.2024011.Stochastic pairwise preference convergence in Bayesian agents
Physical Review E. 2024. DOI : 10.1103/PhysRevE.109.054106.2023
Can one hear the shape of a target zone?
Journal of Mathematical Economics. 2023. DOI : 10.1016/j.jmateco.2023.102852.2022
Cauchy Processes, Dissipative Benjamin–Ono Dynamics and Fat-Tail Decaying Solitons
Fractal and Fractional. 2022. DOI : 10.3390/fractalfract6010015.2021
Opinion formation dynamics - Swift collective disillusionment triggered by unmet expectations
Physica A-Statistical Mechanics And Its Applications. 2021. DOI : 10.1016/j.physa.2021.125797.How Chaotic Dynamics Drive a Vintage Grill-Room Spit
2021. 13th Chaotic Modeling and Simulation International Conference, Florence, ITALY, 2020-06-09 - 2020-06-12. p. 695 - 720. DOI : 10.1007/978-3-030-70795-8_50.Brownian Swarm Dynamics and Burgers’ Equation with Higher Order Dispersion
Symmetry. 2021. DOI : 10.3390/sym13010057.2020
Mean-Field Games And Swarms Dynamics In Gaussian And Non-Gaussian Environments
Journal Of Dynamics And Games. 2020. DOI : 10.3934/jdg.2020001.Increasing risk: Dynamic mean-preserving spreads
Journal of Mathematical Economics. 2020. DOI : 10.1016/j.jmateco.2018.11.003.2019
Imitation, Proximity, and Growth - A Collective Swarm Dynamics Approach
Advances in Complex Systems. 2019. DOI : 10.1142/S0219525919500115.On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications
Methodoly and Computing in Applied Probability. 2019. DOI : 10.1007/s11009-017-9566-3.2017
Unraveling Brittle-Fracture Statistics from Intermittent Patterns Formed During Femtosecond Laser Exposure
Physical Review Applied. 2017. DOI : 10.1103/PhysRevApplied.8.054013.2016
Intearcting Brownian Swarms: Some Analytical Results
Entropy. 2016. DOI : 10.3390/e18010027.Control of agent swarms in random environments
Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-6946.2015
Exact soliton-like probability measures for interacting jump processes
The Mathematical Scientist. 2015.Transition and self-healing process between chaotic and self-organized patterns observed during femtosecond laser writing
Optics Express. 2015. DOI : 10.1364/OE.23.016993.2014
Soft Control of Self-organized Locally Interacting Brownian Planar Agents
Computer Aided Systems Theory - EUROCAST 2013; springer, 2014. p. 45 - 52.The estimation problem and heterogenous swarms of autonomous agents
2014. SMTDA 2014 - Stochastic Modeling Techniques and Data Analysis International Conference, Lisbon, Portugal, June 2014.Decentralized Self-Selection of Swarm Trajectories: From Dynamical Systems to Robotic Implementation
Swarm Intelligence. 2014. DOI : 10.1007/s11721-014-0101-7.Local versus nonlocal barycenttic interactions in 1 D agent dynamics
Mathematical Biosciences and Engineering. 2014. DOI : 10.3934/rnbe.2014.11.303.2013
Super-Diffusive Noise Source in Asset Dynamics
Journal Mathematical finance. 2013. DOI : 10.4236/jmf.2013.31004.Soft control of swarms: Analytical approach
2013. ICAART 2013 - 5th international conference on agents and artificial intelligence, Barcelona (Spain), 2013-02-16. p. 147 - 153.self-organized mixed canonical-dissipative dynamics for Brownian planar agents
Cybernetics and Physics. 2013.Time-Delayed Interactions in Networks of Self-Adapting Hopf Oscillators
ISRN Mathematical Analysis. 2013. DOI : 10.1155/2013/816353.On Stochastic Processes Driven by Ballistic Noise Sources
Contemporary Topics in Mathematics and Statistics with Applications; New Dehli: Asian Books Private Limited, 2013. p. 1 - 29.Self-shaping attractors for coupled limit cycle oscillators
Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering; Springer, 2013. p. 97 - 115.Self-Organized Mixed Canonic-Disipative Dynamics for Brownian Planar Agents
2013. EUROCAST 2013 - International Conference on Computer Aided Systems Theory, Las Palmas de Gran Canaria, Spain, February 2013. p. 45 - 52.2012
Spatio-Temporal Patterns for a Generalized Innovation Diffusion Model
Theoretical Economic Letters. 2012. DOI : 10.4236/tel.2012.21001.Networks of Self-Adaptive Dynamical Systems
Ima Journal Of Applied Mathematics. 2012. DOI : 10.1093/imamat/hxs057.2011
Self-Adaptive Attractor-Shaping for Oscillators Networks
2011. Third International Workshop on nonlinear Dynamics and Synchronization and Sixteenth International Symposium on Theoretical Electrical Engineering, Klagenfurt, Österreich, July 25-27, 2011.Femtosecond-laser generation of self-organized bubble patterns in fused silica
Optics Express. 2011. DOI : 10.1364/OE.19.006807.Ultra-fast writing of self-organized bubble networks using femtosecond laser exposure in the cumulative regime
2011. 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011. DOI : 10.1109/CLEOE.2011.5942813.Networks of Self-Adaptive Dynamical Systems
Lausanne, EPFL, 2011. DOI : 10.5075/epfl-thesis-5221.2010
Agent-Based Routing in Queueing Systems
Lausanne, EPFL, 2010. DOI : 10.5075/epfl-thesis-4598.Parametric Resonance in Time-Dependent Networks of Hopf Oscillators
2010. European Conference on Complex Systems (ECCS'10), Lisboa, Portugal, September 13-17, 2010.Centralized versus decentralized control - A solvable stylized model in transportation
PHYSICA A. 2010. DOI : 10.1016/j.physa.2010.05.047.Hyperbolic angular statistics for globally coupled oscillators
Europhysics Letters - European Physical Society Letters (EPL). 2010. DOI : 10.1209/0295-5075/89/10001.2009
Multi-Agent Adaptive Mechanism Leading to Optimal Real-Time Load Sharing
2009. MATHMOD 2009, Vienna, 2009, Vienna, February 11-13, 2009.Circulation of Autonomous Agents in Production and Service Networks
International Journal of Production Economics. 2009. DOI : 10.1016/j.ijpe.2008.01.012.Networks of mixed canonical-dissipative systems and dynamic hebbian learning
International Journal of Computational Intelligence Systems. 2009. DOI : 10.1080/18756891.2009.9727649.Networks of limit cycle oscillators with parametric learning capability
Recent Advances in Nonlinear Dynamics and Synchronization; Springer, 2009. p. 17 - 48.Noise induced temporal patterns in populations of globally coupled oscillators
2009. Second International Workshop on Nonlinear Dynamics and Synchronization (INDS'09), Klagenfurt, Österreich, July 20-21, 2009. p. 194 - 197. DOI : 10.1109/INDS.2009.5227997.2008
Networks of Mixed Canonic-Dissipative Systems and Dynamic Hebbian Learning
2008. First International Workshop on Nonlinear Dynamics and Synchronization (INDS'08), Klagenfurt, Österreich, July 18-19, 2008. p. 220 - 224.Weariness and Loyalty Loss in Recurrent Service Models
2008. MOSIM'08, Paris, 2008, Paris, April 2008.A Connection Between an Exacltly Solvable Stochastic Optimal Control Problem and a Nonlinear Reaction Diffuison Equation
Journal of Optimization Theory and Applications. 2008. DOI : 10.1007/s10957-007-9346-2.On a super-diffusive, nonlinear birth and death process
Physics Letters A. 2008. DOI : 10.1016/j.physleta.2008.01.082.Market Sharing Dynamics Between Two Service Providers
European Journal of Operational Research. 2008. DOI : 10.1016/j.ejor.2007.06.018.Cooperative Dynamics of Loyal Customers in Queueing Networks
Journal of Systems Science and Systems Engineering. 2008. DOI : 10.1007/s11518-008-5078-6.2007
Modeling Human activity in the spirit of Barabasi's queueing systems
Physical Review E. 2007. DOI : 10.1103/PhysRevE.75.026102.Explicit Gittins' Indices for a Class of Superdiffusive Processes
Journal of Applied Probability. 2007. DOI : 10.1239/jap/1183667421.Market Partition in a Dynamic Linear City Game Model
2007. EURO XXII, Prague, 2007, Prague, July 2007.Cooperative dynamics of loyal customers in queueing networks
2007. ICSSSM'06: 2006 International Conference on Service Systems and Service Management. p. 996 - 1001. DOI : 10.1109/icsssm.2006.320780.2006
Soluble models for dynamics driven by super-diffusive noise
Physica A. 2006. DOI : 10.1016/j.physa.2006.02.036.An exact solution to a Kolmogorov type model for two interacting populations
mathematical scientist (the). 2006.Priority index heuristic for multi-armed bandit problems with set-up costs and/or set-up time delays
Internationa Journal of Computer Integrating Manufacturing. 2006. DOI : 10.1080/03081070500066062.2005
From car traffic to production flows : a guided tour through solvable stochastic transport processes
Lausanne, EPFL, 2005. DOI : 10.5075/epfl-thesis-3247.Optimal threshold control for failure-prone tandem production systems
IIE Transactions. 2005. DOI : 10.1080/07408170590969870.Cooperative Flow dynamics in production lines with buffer level dependent production rates
European Journal of operations research. 2005. DOI : 10.1016/j.ejor.2004.03.011.Syphon dynamics - a soluble model of multi-agents cooperative behavior
Europhysics Letters - European Physical Society Letters (EPL). 2005. DOI : 10.1209/epl/i2004-10462-x.2004
The right time to sell a stock whose price is driven by Markovian noise
Annals of Applied Probability. 2004. DOI : 10.1214/105051604000000747.On the outflow process of N-stations merge systems for items with non-vanishing spacial extensions
2004.Quantum random walk and piecewise deterministic evolutions
Physical Review Letters. 2004. DOI : 10.1103/PhysRevLett.92.120601.Stochastic Control for a Class of Random Evolution Models
Applied Mathematics and Optimization. 2004. DOI : 10.1007/s00245-003-0786-2.Relative entropy and Efficiency of diffusion mediated transport processes
Journal of Physics A. 2004. DOI : 10.1088/0305-4470/38/6/005.Supersymmetry in random two velocity processes
Physica A. 2004. DOI : 10.1016/j.physa.2003.09.048.Self-organization of critical behavior in controlled general queueing models
Physics Letters A. 2004. DOI : 10.1016/j.physleta.2004.01.015.An elementary model for customer fidelity
2004.2003
Optimal Hysteresis for Deteriorating Two-armed Bandit Problem with Switching Costs
Automatica. 2003. DOI : 10.1016/S0005-1098(03)00203-6.Continuous time Restless Bandits and dynamic scheduling for make-to-stock production
IEEE Transactions on Robotics and Automation. 2003. DOI : 10.1109/TRA.2003.819728.Resonator stability subject to dynamic random-tilt aberration
Journal of the Optical Society of America a-Optics Image Science and Vision. 2003. DOI : 10.1364/JOSAA.20.000151.Dynamic scheduling for production systems operating in a random environment
Lausanne, EPFL, 2003. DOI : 10.5075/epfl-thesis-2825.2002
The Resonant Retina: Exploiting Vibration Noise to Optimally detect Edges in an Image
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. DOI : 10.1109/TPAMI.2003.1227982.Mesoscopic derivation of a fundamental diagram of one-lane traffic
Physics Letters A. 2002. DOI : 10.1016/S0375-9601(02)01082-4.The stochastic retina: an edge detector in the presence of noise
2002.How many blocks can children pile up? Some analytical results
Journal of the Physical Society of Japan. 2002. DOI : 10.1143/jpsj.71.9.Dynamic scheduling of a flexible machine. Restless bandit formulation
APII-JESA Journal Europeen des Systemes Automatises. 2002.Ordonnancement dynamique d'une machine flexible Formulation en processus de Bandits-manchots
Journal Européen des Systèmes Automatisés. 2002.2001
Dynamic scheduling of a multi-items production operating on a make-to-stock basis
2001. p. 549 - 552. DOI : 10.1109/ETFA.2001.996412.High Flexible Feeding of Components for Automatic Assembly. The SyFA module
2001. p. 613 - 621. DOI : 10.1109/ETFA.2001.996421.Optimal stoping and Gittins' indices for piecewise deterministic evolution process
Discrete Event Dynamic Systems. 2001. DOI : 10.1023/A:1011205206089.Production indices obtained by a myopic policy for non-markovian dynamics
International Journal of Production Economics. 2001. DOI : 10.1016/S0925-5273(01)00112-8.2000
Fluctuations of the production output of transfer lines
Journal of Intelligent Manufacturing. 2000. DOI : 10.1023/A:1008942917166.Production flexible en présence d'aléas: quelques modèles d'ordonnancement et de gestion des flux de produits
Lausanne, EPFL, 2000. DOI : 10.5075/epfl-thesis-2130.1999
Stopping and allocation indices for piecewise deterministic flow processes
1999.Random production flows. An exactly solvable fluid model
1999. 2nd Seminar on Stochastic Analysis, Random Fields and Applications, Ctr stefano franscini, ascona, switzerland, Sep 16-21, 1996. p. 125 - 135. DOI : 10.1007/978-3-0348-8681-9_9.On the variance of the production output of transfer lines
IEEE Transactions on Robotics and Automation. 1999. DOI : 10.1109/70.744600.1998
Hedging point for non-Markovian piecewise deterministic production processes
Discrete Event Dynamic Systems: Theory and Applications. 1998. DOI : 10.1023/A:1008349216550.Variations stochastiques des flux en production industrielle
Lausanne, EPFL, 1998. DOI : 10.5075/epfl-thesis-1871.1997
Analytical results for the performance and the control of stochastic flow systems
Journal of Intelligent Manufacturing. 1997. DOI : 10.1023/A:1018514401057.1996
Semi-markov processes with phase-type waiting times
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 1996.1995
Continuous versus discrete flow of parts in a production dipole. Exact transient analysis
1995. p. 167 - 173. DOI : 10.1109/ETFA.1995.496717.Random exploration approach for automatic chamferless insertion
International Journal of Robotics Research. 1995. DOI : 10.1177/027836499501400206.A solvable nonlinear reaction-diffusion model
Physics Letters A. 1995. DOI : 10.1016/0375-9601(94)00990-7.1993
Stochastic dispersive transport. An excursion from statistical physics to automated production line design
Applied Stochastic Models and Data Analysis. 1993. DOI : 10.1002/asm.3150090207.Probabilistic solutions of high order partial differential equations
Physics Letters A. 1993. DOI : 10.1016/0375-9601(93)90700-A.Polarization mode dispersion for single-mode fibers with polarization dependent losses
Optics Communications. 1993. DOI : 10.1016/0030-4018(93)90724-J.1992
On the diffusion induced by alternating renewal processes
Physica A: Statistical Mechanics and its Applications. 1992. DOI : 10.1016/0378-4371(92)90333-L.Continuous time random walks with Erlangian pausing time distributions
Physics Letters A. 1992. DOI : 10.1016/0375-9601(92)90846-E.Stochastic dispersive transport. An excursion from statistical physics to automated production line design
1992. p. 551 - 65.1991
Automated mobile robots under the influence of random disturbances
Robotica. 1991. DOI : 10.1017/S0263574700010171.Variational formulation and ergodic invariants
Physics Letters A. 1991. DOI : 10.1016/0375-9601(91)91044-E.1990
Generalized master equations and the telegrapher's equation
Physica A: Statistical Mechanics and its Applications. 1990. DOI : 10.1016/0378-4371(90)90191-T.Chaos in vibrotransportation
1990. Dynamics and Stochastic Processes Theory and Applications Workshop, Lisbon, Portugal, 24-29 Oct. 1988. p. 142 - 164. DOI : 10.1007/3-540-52347-2_29.A PROBABILISTIC CONNECTION BETWEEN THE BURGER AND A DISCRETE BOLTZMANN-EQUATION
Europhysics Letters - European Physical Society Letters (EPL). 1990. DOI : 10.1209/0295-5075/12/3/001.1989
Periodic versus chaotic dynamics in vibratory feeders
Helvetica Physica Acta. 1989. DOI : 10.5169/seals-116028.CHAOS IN MECHANICAL ENGINEERING DEVICES
Helvetica Physica Acta. 1989. DOI : 10.5169/seals-116051.Numerical study of a model of vibro-transporter
Physics Letters A. 1989. DOI : 10.1016/0375-9601(89)90654-3.1988
DYNAMIC DERIVATION OF THE WEAK-SCATTERING K-DENSITY
Journal of the Optical Society of America a-Optics Image Science and Vision. 1988. DOI : 10.1364/josaa.5.001649.On the origin of chaos in gearbox models
Physica D: Nonlinear Phenomena. 1988. DOI : 10.1016/0167-2789(88)90038-3.1986
Decay of unstable states in presence of fluctuations
Helvetica Physica Acta. 1986. DOI : 10.5169/seals-115702.Supersymmetry and signal propagation in inhomogeneous transmission lines
Physica A: Statistical Mechanics and its Applications. 1986. DOI : 10.1016/0378-4371(86)90085-3.1985
Exact solutions for a class of master equations
Physics Letters A. 1985. DOI : 10.1016/0375-9601(85)90344-5.1983
Study of a class of models for self-organization: equilibrium analysis
Journal of Statistical Physics. 1983. DOI : 10.1007/BF01008958.1982
Exact solution for the diffusion in bistable potentials
Journal of Statistical Physics. 1982. DOI : 10.1007/BF01020789.Exact results for the diffusion in a class of asymmetric bistable potentials
Journal of Mathematical Physics. 1982. DOI : 10.1063/1.525684.Diffusion in a class of double-well potentials - exact results
Physics Letters A. 1982. DOI : 10.1016/0375-9601(82)90494-7.1981
Study of a class of non-linear stochastic processes boomerang behaviour of the mean path
Physica D: Nonlinear Phenomena. 1981. DOI : 10.1016/0167-2789(81)90014-2.1979
Exact solutions of a class of non-linear Fokker-Planck equations
Physics Letters A. 1979. DOI : 10.1016/0375-9601(79)90256-1.Exact time dependent probability density for a non-linear non-Markovian stochastic process
Helvetica Physica Acta. 1979. DOI : 10.5169/seals-115031.1978
Hard mode stationary states generated by fluctuations
Zeitschrift für Physik B Condensed Matter and Quanta. 1978. DOI : 10.1007/BF01352359.1975
STABILITY OF LINEAR-CHAINS WITH 3RD-ORDER ANHARMONICITY
Helvetica Physica Acta. 1975.Teaching & PhD
Past EPFL PhD Students
Yves Salama, Philippe Ciprut, Fabrice Dusonchet, Roger Filliger, Olivier Gallay, Julio Rodriguez, Guillaume Adrien Sartoretti