Meritxell Bach Cuadra

EPFL STI IEL LTS5
ELD 233 (Bâtiment ELD)
Station 11
1015 Lausanne

EPFL CIBM-SP
CH F0 622 (Bâtiment CH)
Station 6
1015 Lausanne

Meritxell Bach Cuadra received her degree in Telecommunication Engineering (ETSETB) from the Universitat Politècnica de Catalunya (UPC), Spain, in September 1999. In December 1999, she joined the Computer Vision and Image Analysis Group at the Signal Processing Laboratory (LTS5) as a Ph.D. student under the supervision of Prof. Jean-Philippe Thiran. She obtained her PhD degree in November 2003 for her work "Atlas-based Segmentation and Classification of Magnetic Resonance Brain Images." In June 2005 she joined the Signal Processing Core (SPC) of the Biomedical Imaging Center (CIBM) as responsible of the SPC-CHUV Unit at the Radiology Department of the Lausanne University Hospital (CHUV). As head of the SPC-CHUV unit her goal is to coordinate the medical image analysis research at LTS5 with the needs of expertise in signal/image processing of physicians and researchers at CHUV. In March 2011 Meritxell was promoted to Senior Lecturer (Maître d’Enseignement et de Recherche) at the School of Biology and Medicine of the University of Lausanne where she will teach and develop independent researches at the interface between medical Imaging and image analysis. She is currently affiliated to both the Radiology Department of the Lausanne University Hospital and to the Signal Processing Laboratory LTS5 of the EPFL. Her main research interests are related to quantitative analysis of medical imaging and the integration of prior knowledge in this analysis. Meritxell’s research is focus to: - Segmentation (Active Contours, Graph theory), - Statistical classification (Bayesian framework, Hidden Markov Random Fields) - Image registration - applied to different medical image modalities like Magnetic Resonance (MR) and Diffusion MR imaging, Ultrasound imaging and Computed Tomography.

Trustworthy AI in medical image analysis: A unified perspective built on robustness and layers of trust

M. A. ZuluagaI. IšgumM. Bach Cuadra

Current Opinion in Biomedical Engineering. 2026. DOI : 10.1016/j.cobme.2026.100649.

Towards contrast- and pathology-agnostic clinical fetal brain MRI segmentation using SynthSeg

Z. ShangM. KaandorpK. PayetteM. F. GarciaA. Ford  et al.

NeuroImage. 2026. DOI : 10.1016/j.neuroimage.2026.121729.

Physics-Informed Joint Multi-TE Super-Resolution with Implicit Neural Representation for Robust Fetal T2 Mapping

B. BulutM. DanneckerT. SanchezS. Neves SilvaV. Zalevskyi  et al.

2026. 10th International Workshop on Preterm, Perinatal and Paediatric Image Analysis, Daejeon, Korea, Republic of, 2025-09-27 - 2025-09-27. p. 61 - 72. DOI : 10.1007/978-3-032-05997-0_6.

Enhancing Corpus Callosum Segmentation in Fetal MRI via Pathology-Informed Domain Randomization

M. Grifell I PlanaV. ZalevskyiL. SchmidtY. GomezT. Sanchez  et al.

2026. 10th International Workshop on Preterm, Perinatal and Paediatric Image Analysis, Daejeon, Korea, Republic of, 2025-09-27 - 2025-09-27. p. 48 - 60. DOI : 10.1007/978-3-032-05997-0_5.

Automatic Quality Control in Multi-centric Fetal Brain MRI Super-Resolution Reconstruction

T. SanchezV. ZalevskyiA. MihailovG. Martí JuanE. Eixarch  et al.

2026. 10th International Workshop on Preterm, Perinatal and Paediatric Image Analysis, Daejeon, Korea, Republic of, 2025-09-27 - 2025-09-27. p. 3 - 14. DOI : 10.1007/978-3-032-05997-0_1.

Ground-Truth Effects in Learning-Based Fiber Orientation Distribution Estimation in Neonatal Brains

R. LinH. KebiriA. GholipourY. ChenJ. P. Thiran  et al.

2025. 15th International Workshop, CDMRI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, 2024-10-06 - 2024-10-06. p. 24 - 34. DOI : 10.1007/978-3-031-86920-4_3.

A dataset of synthetic, maturation-informed magnetic resonance images of the human fetal brain

H. LajousA. Le Boeuf FlóP. M. GordalizaO. EstebanF. Marques  et al.

Scientific data. 2025. DOI : 10.1038/s41597-025-04926-9.

Exploiting XAI Maps to Improve MS Lesion Segmentation and Detection in MRI

F. SpagnoloN. MolchanovaM. Ocampo-PinedaL. Melie-GarciaM. Bach Cuadra  et al.

2025. 9th International Skin Imaging Collaboration Workshop, International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, Embodied AI and Robotics for HealTHcare Workshop and MICCAI Workshop on Distributed, Collaborative and Federated Learning held at International conference on Medical Image Computing and Computer Assisted Intervention, Marrakesh, Morocco, 2024-10-06 - 2024-10-10. p. 121 - 131. DOI : 10.1007/978-3-031-77610-6_12.

Assessing workflow impact and clinical utility of AI-assisted brain aneurysm detection: A multi-reader study

T. Di NotoS. JankowskiF. PuccinelliG. MarieS. Tourbier  et al.

NeuroImage: Clinical. 2025. DOI : 10.1016/j.nicl.2025.103835.

Fluid and White Matter Suppression contrasts MRI improves Deep Learning detection of Multiple Sclerosis Cortical Lesions

P. M. GordalizaJ. MüllerA. CagolN. MolchanovaF. La Rosa  et al.

NeuroImage: Clinical. 2025. DOI : 10.1016/j.nicl.2025.103818.

Biometry and volumetry in multi-centric fetal brain magnetic resonance imaging: assessing the bias of super-resolution reconstruction

T. SanchezA. MihailovM. KoobN. GirardA. Manchon  et al.

Pediatric Radiology. 2025. DOI : 10.1007/s00247-025-06347-7.

Domain shift, domain adaptation, and generalization: A focus on MRI

J. RichiardiV. RavanoN. MolchanovaP. Macías GordalizaT. Kober  et al.

Trustworthy AI in Medical Imaging; Academic Press, 2025. p. 127 - 151.

Assessing Data Quality on Fetal Brain MRI Reconstruction: A Multi-site and Multi-rater Study

T. SanchezA. MihailovY. GomezG. M. JuanE. Eixarch  et al.

2025. 9th International Workshop on Perinatal, Preterm and Paediatric Image Analysis, Marrakesh, Morocco, 2024-10-06 - 2024-10-06. p. 46 - 56. DOI : 10.1007/978-3-031-73260-7_5.

A roadmap towards standardized neuroimaging approaches for human thalamic nuclei

S. SegobinR. A. HaastV. J. KumarA. LellaA. Alkemade  et al.

Nature reviews. Neuroscience. 2024. DOI : 10.1038/s41583-024-00867-1.

Automated Quantitative Susceptibility and Morphometry MR Study: Feasibility and Interrelation Between Clinical Score, Lesion Load, Deep Grey Matter and Normal-Appearing White Matter in Multiple Sclerosis

G. ManassehT. HilbertM. J. FartariaJ. DeverdunM. B. Cuadra  et al.

Diagnostics. 2024. DOI : 10.3390/diagnostics14232669.

Cross-Age and Cross-Site Domain Shift Impacts on Deep Learning-Based White Matter Fiber Estimation in Newborn and Baby Brains

R. LinA. GholipourJ.-P. ThiranD. KarimiH. Kebiri  et al.

2024. 2024 IEEE International Symposium on Biomedical Imaging (ISBI), Athens, Greece, 2024-05-27 - 2024-05-30. p. 1 - 5. DOI : 10.1109/ISBI56570.2024.10635347.

Robust Estimation of the Microstructure of the Early Developing Brain Using Deep Learning

H. KebiriA. GholipourR. LinL. VasungD. Karimi  et al.

2023. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, Vancouver, Canada, October 8-12, 2023. p. 293 - 303. DOI : 10.1007/978-3-031-43990-2_28.

Streamline RimNet: Tools for Automatic Classification of Paramagnetic Rim Lesions in MRI of Multiple Sclerosis

J. NajmP. Macias GordalizaG. BarqueroF. La RosaN. Molchanova  et al.

2023.

Toward a joint automated assessment of cortical and paramagnetic rim lesions with 7T MRI

F. La RosaE. S. BeckM. WynenO. Al-LouziP. Sati  et al.

2022. 38th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis, Amsterdam, NETHERLANDS, Oct 26-28, 2022. p. 259 - 259.

Fluid and White Matter Suppression New Sensitive 3 T Magnetic Resonance Imaging Contrasts for Cortical Lesion Detection in Multiple Sclerosis

J. MullerF. La RosaJ. BeaumontC. TsagkasR. Rahmanzadeh  et al.

Investigative Radiology. 2022. DOI : 10.1097/RLI.0000000000000877.

A multi-scale probabilistic atlas of the human connectome

Y. Aleman-GomezA. GriffaJ.-C. HoudeE. NajdenovskaS. Magon  et al.

Scientific Data. 2022. DOI : 10.1038/s41597-022-01624-8.

Through-Plane Super-Resolution With Autoencoders in Diffusion Magnetic Resonance Imaging of the Developing Human Brain

H. KebiriE. J. Canales-RodriguezH. LajousP. de DumastG. Girard  et al.

Frontiers In Neurology. 2022. DOI : 10.3389/fneur.2022.827816.

Editorial: Computational Neuroimage Analysis Tools for Brain (Diseases) Biomarkers

D. M. SimaM. Bach CuadraT. B. DyrbyK. Van Leemput

Frontiers In Neuroscience. 2022. DOI : 10.3389/fnins.2022.841807.

Connectome Mapper 3: A Flexible and Open-Source Pipeline Software for Multiscale Multimodal Human Connectome Mapping

S. TourbierJ. Rue QueraltK. GlombY. Aleman-GomezE. Mullier  et al.

Journal of Open Source Software. 2022. DOI : 10.21105/joss.04248.

Slice Estimation in Diffusion MRI of Neonatal and Fetal Brains in Image and Spherical Harmonics Domains Using Autoencoders

H. KebiriG. GirardY. Aleman-GomezT. YuA. Jakab  et al.

2022. 13th International Workshop on Computational Diffusion MRI (CDMRI), Singapore, SINGAPORE, Sep 22, 2022. p. 3 - 13. DOI : 10.1007/978-3-031-21206-2_1.

BMAT: An open-source BIDS managing and analysis tool

C. Vanden BulckeM. WynenJ. DetobelF. La RosaM. Absinta  et al.

Neuroimage-Clinical. 2022. DOI : 10.1016/j.nicl.2022.103252.

Combining Model Driven and Data Driven Approaches for Inverse Problems in Parameter Estimation and Image Reconstruction: From Modelling to Validation

T. Yu / J.-P. ThiranM. Bach Cuadra (Dir.)

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-9693.

Deep learning-based analysis of multiple sclerosis lesions with high and ultra-high field MRI

F. La Rosa / J.-P. ThiranM. Bach Cuadra (Dir.)

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-9571.

An assessment of intra-scanner reproducibility of myelin-sensitive MRI measures

R. RahmanzadehM. WeigelP. -J. LuL. Melie-GarciaT. D. Nguyen  et al.

2021. p. 430 - 431.

Automated detection of cortical lesions with single and multi-contrast 7T MRI

F. La RosaE. S. BeckJ. MaranzanoJ. -P. ThiranC. Granziera  et al.

2021. p. 458 - 459.

CLaiMS-Net: cortical lesions assessment in multiple sclerosis patients via a convolutional neural network and a single 3T MRI acquisition

F. La RosaP. -J. LuR. RahmanzadehA. CagolM. Barakovic  et al.

2021. p. 457 - 458.

Cortical lesion detection using FLAWS in multiple sclerosis

J. MullerR. RahmanzadehC. TsagkasM. BarakovicP. -J. Lu  et al.

2021. p. 433 - 434.

Chronic White Matter Inflammation and Serum Neurofilament Levels in Multiple Sclerosis

P. MaggiJ. KuhleS. SchadelinF. van der MeerM. Weigel  et al.

Neurology. 2021. DOI : 10.1212/WNL.0000000000012326.

Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging

R. RahmanzadehP.-J. LuM. BarakovicM. WeigelP. Maggi  et al.

Brain. 2021. DOI : 10.1093/brain/awab088.

Automated assessment of paramagnetic rim lesions in multiple sclerosis patients with 3T and 7T MP2RAGE

F. La RosaG. BarqueroO. Al-LouziB. M. Maréchal MortametT. Kober  et al.

2021. The 2021 ISMRM & SMRT Annual Meeting & Eshibition, [Online], 15-20 may, 2021.

GAMER-MRI in Multiple Sclerosis Identifies the Diffusion-Based Microstructural Measures That Are Most Sensitive to Focal Damage: A Deep-Learning-Based Analysis and Clinico-Biological Validation

P.-J. LuM. BarakovicM. WeigelR. RahmanzadehR. Galbusera  et al.

Frontiers In Neuroscience. 2021. DOI : 10.3389/fnins.2021.647535.

MPRAGE to MP2RAGE UNI translation via generative adversarial network improves the automatic tissue and lesion segmentation in multiple sclerosis patients

F. La RosaT. YuG. BarqueroJ.-P. ThiranC. Granziera  et al.

Computers in Biology and Medicine. 2021. DOI : 10.1016/j.compbiomed.2021.104297.

Quantitative Evaluation of Enhanced Multi-plane Clinical Fetal Diffusion MRI with a Crossing-Fiber Phantom

H. KebiriH. LajousY. Aleman-GomezG. GirardE. C. Rodriguez  et al.

2021. 12th International Workshop on Computational Diffusion MRI (CDMRI), ELECTR NETWORK, Oct 01, 2021. p. 12 - 22. DOI : 10.1007/978-3-030-87615-9_2.

Simulated Half-Fourier Acquisitions Single-shot Turbo Spin Echo (HASTE) of the Fetal Brain: Application to Super-Resolution Reconstruction

H. LajousT. HilbertC. W. RoyS. TourbierP. de Dumast  et al.

2021. 3rd Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE) / 6th International Workshop on Preterm, Perinatal and Paediatric Image Analysis (PIPPI), ELECTR NETWORK, Sep 27-Oct 01, 2021. p. 157 - 167. DOI : 10.1007/978-3-030-87735-4_15.

GAMER MRI: Gated-attention mechanism ranking of multi-contrast MRI in brain pathology

P.-J. LuY. YooR. RahmanzadehR. GalbuseraM. Weigel  et al.

Neuroimage-Clinical. 2021. DOI : 10.1016/j.nicl.2020.102522.

Model-informed machine learning for multi-component T2 relaxometry

T. YuE. J. Canales RodriguezM. PizzolatoG. F. PireddaT. Hilbert  et al.

Medical Image Analysis. 2020. DOI : 10.1016/j.media.2020.101940.

RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis

G. BarqueroF. La RosaH. KebiriP.-J. LuR. Rahmanzadeh  et al.

NeuroImage: Clinical. 2020. DOI : 10.1016/j.nicl.2020.102412.

Evolution of Cortical and White Matter Lesion Load in Early-Stage Multiple Sclerosis: Correlation With Neuroaxonal Damage and Clinical Changes

R.-A. TodeaP.-J. LuM. J. FartariaG. BonnierR. Du Pasquier  et al.

Frontiers In Neurology. 2020. DOI : 10.3389/fneur.2020.00973.

Partial-volume modeling reveals reduced gray matter in specific thalamic nuclei early in the time course of psychosis and chronic schizophrenia

Y. Aleman-GomezE. NajdenovskaT. RoineM. J. FartariaE. J. Canales-Rodriguez  et al.

Human Brain Mapping. 2020. DOI : 10.1002/hbm.25108.

Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: a deep learning method based on FLAIR and MP2RAGE

F. La RosaA. AbdulkadirM. J. FartariaR. RahmanzadehP.-J. Lu  et al.

NeuroImage: Clinical. 2020. DOI : 10.1016/j.nicl.2020.102335.

Normalization of aberrant pretherapeutic dynamic functional connectivity of extrastriate visual system in patients who underwent thalamotomy with stereotactic radiosurgery for essential tremor: a resting-state functional MRI study

C. TuleascaT. A. W. BoltonJ. RegisE. NajdenovskaT. Witjas  et al.

Journal Of Neurosurgery. 2020. DOI : 10.3171/2019.2.JNS183454.

Higher Order Spherical Harmonics Reconstruction of Fetal Diffusion MRI With Intensity Correction

M. DeprezA. PriceD. ChristiaensG. L. EstrinL. Cordero-Grande  et al.

IEEE Transactions on Medical Imaging (T-MI). 2020. DOI : 10.1109/TMI.2019.2943565.

CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis

P. MaggiM. J. FartariaJ. JorgeF. La RosaM. Absinta  et al.

Nmr In Biomedicine. 2020. DOI : 10.1002/nbm.4283.

Improved susceptibility-weighted imaging for high contrast and resolution thalamic nuclei mapping at 7T

J. JorgeF. GretschE. NajdenovskaC. TuleascaM. Levivier  et al.

Magnetic Resonance in Medicine. 2020. DOI : 10.1002/mrm.28197.

Quantification in Musculoskeletal Imaging Using Computational Analysis and Machine Learning: Segmentation and Radiomics

M. B. CuadraP. Omoumi

Seminars In Musculoskeletal Radiology. 2020. DOI : 10.1055/s-0039-3400268.

An Anatomically-Informed 3D CNN for Brain Aneurysm Classification with Weak Labels

T. Di NotoG. MarieS. TourbierY. Aleman-GomezG. Saliou  et al.

2020. 3rd International Workshop on Machine Learning in Clinical Neuroimaging (MLCN) / 2nd International Workshop on Radiomics and Radiogenomics in Neuro-Oncology using AI (RNO-AI), Lima, PERU, OCT 04-08, 2020. p. 56 - 66. DOI : 10.1007/978-3-030-66843-3_6.

Resting-state functional MRI for functional neurosurgery: seeing the light?

C. TuleascaJ. RegisE. NajdenovskaT. WitjasN. Girard  et al.

Journal Of Neurosurgery. 2019. DOI : 10.3171/2019.1.JNS1995.

Deep learning-based detection of cortical lesions in multiple sclerosis patients with FLAIR, DIR, and MP2RAGE MRI sequences

F. La RosaM. J. FartariaA. AbdulkadirR. RahmanzadehP.-J. Lu  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS), Stockholm, Sweden, September 11-13, 2019. p. 131 - 356. DOI : 10.1177/1352458519868078.

A fully automated approach for differential diagnosis support in multiple sclerosis based on the central vein sign

M. J. FartariaP. MaggiP. SatiD. S. ReichC. Granziera  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Stockholm, SWEDEN, Sep 11-13, 2019. p. 133 - 133.

Deep learning-based detection of cortical lesions in multiple sclerosis patients with FLAIR, DIR, and MP2RAGE MRI sequences

F. La RosaM. J. FartariaA. AbdulkadirR. RahmanzadehP. -J. Lu  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Stockholm, SWEDEN, Sep 11-13, 2019. p. 206 - 207.

Axonal damage explains part of and extends beyond the diffuse pathology evidenced by T1 mapping in normal-appearing white matter of multiple sclerosis patients

R. RahmanzadehP. -J. LuM. WeigelR. GalbuseraF. La Rosa  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Stockholm, SWEDEN, Sep 11-13, 2019. p. 683 - 684.

Deep learning analysis applied to multi-parametric advanced MRI shows higher myelin content and neurite density in juxtacortical lesions compared to periventricular lesions

P. -J. LuR. RahmanzadehR. GalbuseraB. OdryM. Weigel  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Stockholm, SWEDEN, Sep 11-13, 2019. p. 241 - 242.

Axonal and myelin injury in white matter and cortex of relapsing-remitting and progressive multiple sclerosis patients: a combined myelin water and multi-shell diffusion MRI study

R. RahmanzadehP. -J. LuM. WeigelR. GalbuseraT. D. Nguyen  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Stockholm, SWEDEN, Sep 11-13, 2019. p. 682 - 683.

Episodic memory decline in Parkinson' s disease: relation with white matter hyperintense lesions and influence of quantification method

V. DunetM. J. FartariaJ. DeverdunE. Le BarsF. Maury  et al.

Brain Imaging And Behavior. 2019. DOI : 10.1007/s11682-018-9909-x.

Longitudinal analysis of white matter and cortical lesions in multiple sclerosis

M. J. FartariaT. KoberC. GranzieraM. B. Cuadra

Neuroimage-Clinical. 2019. DOI : 10.1016/j.nicl.2019.101938.

Letter: Deep Brain Stimulation of the Pedunculopontine Nucleus Area in Parkinson Disease: Magnetic Resonance Imaging- Based Anatomoclinical Correlations and Optimal Target

C. TuleascaJ. RegisE. NajdenovskaT. WitjasN. Girard  et al.

Neurosurgery. 2019. DOI : 10.1093/neuros/nyy516.

Pretherapeutic resting-state fMRI profiles are associated with MR signature volumes after stereotactic radiosurgical thalamotomy for essential tremor

C. TuleascaJ. RegisE. NajdenovskaT. WitjasN. Girard  et al.

Journal Of Neurosurgery. 2018. DOI : 10.3171/2018.7.GKS18752.

In-vivo probabilistic atlas of human thalamic nuclei based on diffusion-weighted magnetic resonance imaging

E. NajdenovskaY. Aleman-GomezG. BattistellaM. DescoteauxP. Hagmann  et al.

Scientific Data. 2018. DOI : 10.1038/sdata.2018.270.

Personalized Anatomic Eye Model From T1-Weighted Volume Interpolated Gradient Echo Magnetic Resonance Imaging of Patients With Uveal Melanoma

H.-G. NguyenR. SznitmanP. MaederA. SchalenbourgM. Peroni  et al.

International Journal Of Radiation Oncology Biology Physics. 2018. DOI : 10.1016/j.ijrobp.2018.05.004.

Automated assessment of new and enlarged white matter and cortical lesions in early multiple sclerosis

M. J. FartariaG. BonnierT. KoberM. B. CuadraC. Granziera

2018. 34th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS), Berlin, GERMANY, Oct 10-12, 2018. p. 570 - 570.

Accuracy versus reproducibility: comprehensive assessment of four automated methods for multiple sclerosis lesion segmentation

M. J. FartariaR. Corredor-JerezJ. RichiardiB. MarechalC. Granziera  et al.

2018. 34th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS), Berlin, GERMANY, Oct 10-12, 2018. p. 359 - 359.

Differential diagnosis of multiple sclerosis with machine learning-based central vein sign recognition

J. RichiardiP. MaggiM. J. FartariaF. La RosaJ. Jorge  et al.

2018. 34th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS), Berlin, GERMANY, Oct 10-12, 2018. p. 530 - 531.

Shallow vs deep learning architectures for white matter lesion segmentation in the early stages of multiple sclerosis

F. La RosaM. J. FartariaT. KoberJ. RichiardiC. Granziera  et al.

2018. BrainLes Workshop, MICCAI 2018, Granada, Spain, September 16, 2018. DOI : 10.1007/978-3-030-11723-8_14.

Ocular Structures Segmentation from Multi-sequences MRI Using 3D Unet with Fully Connected CRFs

Huu-Giao NguyenA. PicaP. MaederA. SchalenbourgM. Peroni  et al.

2018. 1st International Workshop on Computational Pathology (COMPAY) / 5th International Workshop on Ophthalmic Medical Image Analysis (OMIA), Granada, SPAIN, Sep 16-20, 2018. p. 167 - 175. DOI : 10.1007/978-3-030-00949-6_20.

An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease

D. SchmitterA. RocheB. MaréchalD. RibesA. Abdulkadir  et al.

NeuroImage: Clinical. 2015. DOI : 10.1016/j.nicl.2014.11.001.

Evaluation and Comparison of Current Fetal Ultrasound Image Segmentation Methods for Biometric Measurements: A Grand Challenge

S. RuedaS. FathimaC. L. KnightM. YaqubA. T. Papageorghiou  et al.

IEEE Transactions on Medical Imaging (T-MI). 2014. DOI : 10.1109/Tmi.2013.2276943.

Volume-based vs. voxel-based brain morphometry in Alzheimer's disease prediction

A. RocheD. A. SchmitterB. M. Maréchal MortametD. Ribes LemayA. Abdulkadir  et al.

2014. 23rd International Society for Magnetic Resonance in Medicine (ISMRM) Conference, Milan, Italy, May 10-16, 2014.

MBIS: Multivariate Bayesian Image Segmentation tool

O. EstebanG. WollnyS. GorthiM.-J. Ledesma-CarbayoJ.-P. Thiran  et al.

Computer Methods And Programs In Biomedicine. 2014. DOI : 10.1016/j.cmpb.2014.03.003.

Simulation-based evaluation of susceptibility distortion correction methods in diffusion MRI for connectivity analysis

O. EstebanA. DaducciE. CaruyerK. O'BrienL. Carbayo  et al.

2014. IEEE 11th International Symposium on Biomedical Imaging - From Nano to Macro (ISBI), Beijing, China, April 29 - May 2, 2014. p. 738 - 741. DOI : 10.1109/ISBI.2014.6867976.

A NEW APPROACH FOR CEREBELLO-THALAMIC MOTOR NETWORK EVALUATION IN ASYMPTOMATIC PREMUTATION CARRIERS AT RISK FOR FXTAS

G. BattistellaN. GhazalehE. FornariE. NajdenovskaM. Bach Cuadra  et al.

Human Brain Mapping, Seattle, USA, June 16-20, 2013.

Multi-atlas fusion methods for segmentation of head and neck lymph nodes for radiotherapy planning

S. GorthiM. Bach CuadraJ. Villafruela VicarioP.-A. TercierJ.-P. Thiran  et al.

2013. 2nd ESTRO Forum, Geneva, April 19-23, 2013.

Weighted Shape-Based Averaging With Neighborhood Prior Model for Multiple Atlas Fusion-Based Medical Image Segmentation

S. GorthiM. Bach CuadraP.-A. TercierA. S. AllalJ.-P. Thiran

IEEE Signal Processing Letters. 2013. DOI : 10.1109/LSP.2013.2279269.

Towards a connectome mapping pipeline for neonates using high-resolution MP2RAGE and DTI

A. PauliJ. SchneiderM. Bach CuadraA. GriffaE. Fischi Gomez  et al.

2013. 21st Annual Meeting International Society for Magnetic Resonance in Medicine, Salt Lake City, Utah, USA, April 20-26,2013.

Evaluation of Atlas Fusion Strategies for Segmentation of Head and Neck Lymph Nodes for Radiotherapy Planning

S. GorthiM. Bach CuadraU. SchickP.-A. TercierA. S. Allal  et al.

2012. IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, May 2-5, 2012. p. 1276 - 1279. DOI : 10.1109/ISBI.2012.6235795.

How to Measure Cortical Folding from MR Images: a Step-by-Step Tutorial to Compute Local Gyrification Index

M. SchaerM. Bach CuadraN. SchmanskyB. FischlJ.-P. Thiran  et al.

Journal of Visualized Experiments. 2012. DOI : 10.3791/3417.

Brain tissue segmentation on diffusion weighted magnetic resonance data

O. Esteban-SanzS. GorthiG. WollnyA. DaducciM. J. Ledesma-Carbayo  et al.

2012. IEEE International Symposium on Biomedical Imaging (ISBI) 2012, Barcelona, Spain, 2-5 May 2012.

Atlas-free brain tissue segmentation using a single T1-weighted MRI acquisition

T. KoberA. RocheO. Esteban-SanzS. GorthiD. Ribes  et al.

2012. International Society for Magnetic Resonance in Medicine (ISMRM), Melbourne, Australia, May 5-11.

STATISTICAL MODELING OF THE EYE FOR MULTIMODAL TREATMENT PLANNING FOR EXTERNAL BEAM RADIOTHERAPY OF INTRAOCULAR TUMORS

M. RUEEGSEGGERM. Bach CuadraA. PicaC. AMSTUTZT. RUDOLPH  et al.

International Journal of Radiation Oncology, Biology, Physics.. 2012. DOI : 10.1016/j.ijrobp.2012.05.040.

Quantitative morphometry analysis of the fetal brain using clinical MR imaging

M. Bach CuadraG. V. BonannoL. GuibaudS. EliezJ.-P. Thiran  et al.

19th Annual Meeting and Exhibition ISMRM, Montreal, Quebec, Canada, May 7-13.

Towards a diffusion image processing validation and accuracy prediction framework

F. Pizzorni FerrareseA. DaducciM. Bach CuadraA. LemkaddemC. Granziera  et al.

2011. IEEE International Conference on Image Processing, Brussel, Belgium, September 11-14, 2011. p. 2269 - 2272. DOI : 10.1109/ICIP.2011.6116091.

Comparison of tissue classification models for automatic brain MR segmentation

D. RibesB. MortametM. Bach CuadraC. JackR. Meuli  et al.

19th Annual Meeting and Exhibition ISMRM, Montreal, Quebec, Canada, May 7-13, 2011.

Fusion of Multi-Atlas Segmentations with Spatial Distribution Modeling

S. GorthiM. Bach CuadraU. SchickP.-A. TercierA. S. Allal  et al.

2011. MICCAI Worskshop on Multi-Atlas Labeling and Statistical Fusion, Toronto, Canada, September, 18-22, 2011.

Review on Atlas-based Segmentation of Magnetic Resonance Brain Images

M. Cabezas GrebolA. OliverX. LladoJ. FreixenetM. Bach Cuadra

Computer Methods and Programs in Biomedicine. 2011. DOI : 10.1016/j.cmpb.2011.07.015.

Model-based Segmentation and Fusion of 3D Computed Tomography and 3D Ultrasound of the Eye for Radiotherapy Planning

M. Bach CuadraS. GorthiF. I. KarahanogluB. PaquierA. Pica  et al.

Computational Vision and Medical Image Processing; Springer, 2011. p. 247 - 263.

A pipeline approach with spatial information for segmenting multiple sclerosis lesions on brain magnetic resonance imaging

M. Cabezas GrebolM. Bach CuadraA. OliverX. LladóJ. Freixenet  et al.

5th Joint triennial congress of the European and Americas committees for treatment and research in multiple sclerosis, Amsterdam, The Netherlands, October 19-22, 2011.

On the Convergence of EM-Like Algorithms for Image Segmentation using Markov Random Fields

A. RocheD. RibesM. Bach CuadraG. Krüger

Medical Image Analysis -Elsevier-. 2011. DOI : 10.1016/j.media.2011.05.002.

3D Ultrasound Tumor Segmentation and Fusion with CT for Stereotactic Radiation Therapy Planning of Retinoblastoma

A. PicaF. I. KarahanogluA.-R. CiurteS. GorthiA. Balmer  et al.

10th Biennial Congress and Exhibition of the International Stereotactic Radio surgery Society, Paris, France, May 8-12, 2011.

Active Deformation Fields: Dense Deformation Field Estimation for Atlas-based Segmentation using the Active Contour Framework

S. GorthiV. DuayX. BressonM. Bach CuadraS. Castro  et al.

Medical Image Analysis. 2011. DOI : 10.1016/j.media.2011.05.008.

Comparison of Energy Minimization Methods for 3-D Brain Tissue Classification

S. GorthiJ.-P. ThiranM. Bach Cuadra

2011. IEEE International Conference on Image Processing, Brussels, Belgium, September 11-14, 2011. p. 57 - 60. DOI : 10.1109/ICIP.2011.6116615.

An Efficient Segmentation Method for Ultrasound Images based on a Semi-supervised Approach and Patch-based Features

A.-R. CiurteN. HouhouS. NedevschiA. PicaF. Munier  et al.

2011. 8th IEEE International Symposium on Biomedical Imaging, Chicago, Illinois, USA, March 30th - April 2nd, 2011. p. 969 - 972. DOI : 10.1109/ISBI.2011.5872564.

Exporting Contours to DICOM-RTSTRUCT

S. GorthiM. Bach CuadraJ.-P. Thiran

Kitware Newsletter.

A post-processing pipeline to reconstruct the developing fetal brain using low-resolution MRI

M. SchaerM. Bach CuadraS. EliezL. GuibaudJ.-P. Thiran

16th Annual Meeting of the Organization for Human Brain Mapping, Barcelona, Spain, June 6th-10th, 2010.

Central and Cortical Gray Mater Segmentation of Magnetic Resonance Images of the Fetal Brain

M. Bach CuadraM. SchaerG. V. BonannoA. AndréL. Guibaud  et al.

ISMRM-ESMRMB Joint Annual Meeting, Stockholm, Sweden, 1st-7th May, 2010.

Regional cortical volumes and congenital heart disease: a MRI study in 22q11.2 deletion syndrome

M. SchaerB. GlaserM.-C. OttetM. SchneiderM. Bach Cuadra  et al.

Journal of Neurodevelopmental Disorders. 2010. DOI : 10.1007/s11689-010-9061-4.

Multi-Atlas based Segmentation of Head and Neck CT Images using Active Contour Framework

S. GorthiM. Bach CuadraU. SchickP.-A. TercierA. S. Allal  et al.

2010. MICCAI workshop on 3D Segmentation Challenge for Clinical Applications, Beijing, China, September 20-24, 2010.

Deviant trajectories of cortical maturation in 22q11.2 deletion syndrome (22q11DS): A cross-sectional and longitudinal study

M. SchaerM. DebbanéM. Bach CuadraM.-C. OttetB. Glaser  et al.

Schizophrenia Research. 2009. DOI : 10.1016/j.schres.2009.09.016.

How can physicians quantify brain degeneration?

M. Bach CuadraJ.-P. ThiranF. Marques

Applied Signal Processing: A MATLAB-Based Proof of Concept; MA: Springer, 2009. p. 411 - 450.

Exporting Contours to DICOM-RT Structure Set

S. GorthiM. Bach CuadraJ.-P. Thiran

Insight Journal. 2009.

A Multimodal Evaluation Method for Medical Image Segmentation

R. CardenesR. de Luis GarciaM. Bach Cuadra

Computerized Medical Imaging and Graphics. 2009. DOI : 10.1016/j.cmpb.2009.04.009.

Active Contour-Based Segmentation of Head and Neck with Adaptive Atlas Selection

S. GorthiV. DuayM. Bach CuadraP.-A. TercierA. S. Allal  et al.

2009. MICCAI workshop on 3D Segmentation Challenge for Clinical Applications, London, September 20-24, 2009.

Segmentation of head and neck lymph node regions for radiotherapy planning, using active contour based atlas registration

S. GorthiV. DuayN. HouhouM. Bach CuadraU. Schick  et al.

IEEE Journal of selected topics in signal processing. 2009. DOI : 10.1109/JSTSP.2008.2011104.

Model-based Segmentation and Image Fusion of 3D Computed Tomography and 3D Ultrasound of the Eye for Radiotherapy Planning

M. Bach CuadraS. GorthiF. I. KarahanogluF. SalvadorA. Pica  et al.

2009. VIPIMAGE, Porto, Portugal, October 14-16, 2009. p. 53 - 58.

Brain tissue segmentation of fetal MR images

M. Bach CuadraM. SchaerA. AndreL. GuibaudS. Eliez  et al.

2009. Workshop on Image Analysis for Developing Brain, in 12th International Conference on Medical Image Computing and Computer Assisted Intervention, Londond, UK, September 20-24, 2009.

Congenital heart disease affects local gyrification in 22q11.2 deletion syndrome

M. SchaerB. GlaserM. Bach CuadraM. DebbaneJ.-P. Thiran  et al.

Developmental Medicine and Child Neurology. 2009. DOI : 10.1111/j.1469-8749.2009.03281.x.

An Active Contour-based Atlas Registration Model for Automatic Subthalamic Nucleus Targeting on MRI: Method and Validation

V. DuayX. BressonF. J. Sanchez CastroC. PolloM. Bach Cuadra  et al.

2008. 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), New York, NY, USA, September 6-10, 2008. p. 980 - 988. DOI : 10.1007/978-3-540-85990-1.

Bi-planar 2D-to-3D Registration in Fourier Domain for Stereoscopic X-Ray Motion Tracking

D. ZossoB. Le CallennecM. Bach CuadraK. AminianB. M. Jolles  et al.

2008. SPIE Medical Imaging 2008, San Diego, California, USA, 16 - 21 February 2008. DOI : 10.1117/12.769469.

Atlas-based Segmentation

M. Bach CuadraV. DuayJ.-P. Thiran

Biomedical Image Analysis: Methodologies and Applications; Springer, 2008. p. 221 - 244.

A Surface-based approach to Quantify Local Cortical Gyrification

M. SchaerM. Bach CuadraL. TamaritF. LazeyrasS. Eliez  et al.

IEEE Transactions on Medical Imaging (T-MI). 2008. DOI : 10.1109/TMI.2007.903576.

Fast Bias Field Correction for 9.4 Tesla Magnetic Resonance Imaging

X. PenaM. Bach CuadraN. KunzN. JustR. Gruetter  et al.

2008. 16th European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, August 25-29, 2008.

Brain Surface Segmentation of Magnetic Resonance Images of the Fetus

D. FerrarioM. Bach CuadraM. SchaerN. HouhouD. Zosso  et al.

2008. 16th European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, August 25-29, 2008.

Registration of Multiple Regions Derived from the Optical Flow Model and the Active Contour Framework

V. DuayX. BressonN. HouhouM. Bach CuadraJ.-P. Thiran

2007. 15th European Signal Processing Conference (EUSIPCO), Poznan, Poland, Poznan, Poland, September, 3-7, 2007.

Time-Varying Segmentation for Mapping of Land Cover Changes

F. AspertM. Bach-CuadraA. CantoneF. HoleczJ.-P. Thiran

2007. ENVISAT Symposium, Montreux, Switerland, May 2007.

Bias Field Correction in Magnetic Resonance Images of a Rat Brain

X. PeñaM. Bach CuadraN. JustJ.-P. ThiranR. Gruetter

2007

Direct Fourier Tomographic Reconstruction Image-To-Image Filter

D. ZossoM. Bach CuadraJ.-P. Thiran

The Insight Journal. 2007.

Multimodal Evaluation for Medical Image Segmentation

R. CardenesM. Bach CuadraY. ChiI. MarrasR. de Luis  et al.

2007. The 12th International Conference on Computer Analysis of Images and Patterns (CAIP), Vienna, Austria, 27th - 29th August 2007. p. 229 - 236. DOI : 10.1007/978-3-540-74272-2.

Correction to "Comparison and Validation of Tissue Modelization and Statistical Classification Methods in T1-Weighted MR Brain Images"

M. Bach CuadraL. CammounT. ButzO. CuisenaireJ. Thiran

IEEE Transactions on Medical Imaging (T-MI). 2006. DOI : 10.1109/TMI.2006.869963.

Dense Deformation Field Estimation for Atlas-based Segmentation of Pathological MR Brain Images

M. Bach CuadraM. De CraeneV. DuayB. MacqC. Pollo  et al.

Computer Methods and Programs in Biomedicine. 2006. DOI : 10.1016/j.cmpb.2006.08.003.

Dense Deformation Field Estimation for Atlas Registration using the Active Contour Framework

V. DuayM. Bach CuadraX. BressonJ. Thiran

2006.

A New Method For Measuring Cortical Folding In A 3D Space From MR Images

M. SchaerL. TamaritM. Bach CuadraF. LazeyrasJ. Thiran  et al.

2006

Determinants of cortical gray matter volume: hypothesis based on developmental cohorts with normal and abnormal cortical morphology

M. SchaerM. Bach CuadraJ. ThiranS. Eliez

2006

A Cross Validation Study of Deep Brain Stimulation Targeting: From Experts to Atlas-Based, Segmentation-Based and Automatic Registration Algorithms

F. Sanchez CastroC. PolloR. MeuliP. MaederO. Cuisenaire  et al.

IEEE Transactions on Medical Imaging (T-MI). 2006. DOI : 10.1109/TMI.2006.882129.

Investigating individual differences in gray matter in healthy and neurodegenerated brains

B. MortametM. Bach Cuadra

2006

Exploiting Multi-Temporal Information for SAR Image Segmentation

F. AspertM. Bach-CuadraJ.-P. Thiran

2006

Comparison and Validation of Tissue Classification Methods in MR Images of the Brain

B. MortametM. Bach Cuadra

2006

Cross Validation of Experts Versus Registration Methods for Target Localization in Deep Brain Stimulation

F. Sanchez CastroC. PolloR. MeuliP. MaederM. Bach Cuadra  et al.

2005. p. 417 - 424. DOI : 10.1007/11566465_52.

Region-based Satellite Image Classification: Method and Validation

X. GigandetM. Bach CuadraA. PointetL. CammounR. Caloz  et al.

2005. DOI : 10.1109/ICIP.2005.1530521.

Segmentation of Brain Structures in Presence of a Space-Occupying Lesion

C. PolloM. Bach CuadraO. CuisenaireJ. VillemureJ. Thiran

Neuroimage. 2005. DOI : 10.1016/j.neuroimage.2004.10.004.

Comparison and Validation of Tissue Modelization and Statistical Classification Methods in T1-weighted MR Brain Images

M. Bach CuadraL. CammounT. ButzO. CuisenaireJ. Thiran

IEEE Transactions on Medical Imaging (T-MI). 2005. DOI : 10.1109/TMI.2005.857652.

Atlas-based Segmentation of Pathological MR Brain Images using a Model of Lesion Growth

M. Bach CuadraC. PolloA. BarderaO. CuisenaireJ. Villemure  et al.

IEEE Transactions on Medical Imaging (T-MI). 2004. DOI : 10.1109/TMI.2004.834618.

Satellite Image Segmentation and Classification

X. GigandetM. Bach CuadraJ. Thiran

2004

Validation of Tissue Modelization and Classification Techniques in T1-weighted MR Brain Images

M. Bach CuadraL. CammounT. ButzO. CuisenaireJ. Thiran

2004

Atlas-based segmentation and classification of magnetic resonance brain images

M. Bach Cuadra / J.-P. Thiran (Dir.)

Lausanne, EPFL, 2003. DOI : 10.5075/epfl-thesis-2875.

Atlas-Based Segmentation of Pathological Brain MR Images

M. Bach CuadraC. PolloA. BarderaO. CuisenaireJ. Villemure  et al.

2003. p. 14 - 17. DOI : 10.1109/ICIP.2003.1247026.

Atlas-Based Segmentation of Pathological Brains Using a Model of Tumor Growth

M. Bach CuadraJ. GomezP. HagmannC. PolloJ. Villemure  et al.

2002. Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002, 5th International Conference, Tokyo, Japan, September 25–28, 2002. p. 380 - 387. DOI : 10.1007/3-540-45786-0_47.

Validation of Tissue Modelization and Classification Techniques in T1-Weighted MR Brain Images

M. Bach CuadraB. PlatelE. SolanasT. ButzJ. Thiran

2002. MICCAI 2002 5th International Conference, Tokyo, Japan, September 25–28, 2002. p. 290 - 297. DOI : 10.1007/3-540-45786-0_36.

MIP: The ITS-EPFL Medical Image Processing Library

M. Bach CuadraT. ButzE. SolanasO. CuisenaireJ. Thiran

2002

Atlas-based Segmentation using a Model of Lesion Growth

M. Bach CuadraJ. Thiran

2002

Automatic Segmentation of Internal Structures of the Brain in MR Images using a Tandem of Affine and Non Rigid Registration of an Anatomical Brain Atlas

M. Bach CuadraO. CuisenaireR. MeuliJ. Thiran

2001. p. 1083 - 1086. DOI : 10.1109/ICIP.2001.958315.

A Comparative study of the input parameter de-embedding techniques for integral equation methods

E. SuterM. Bach CuadraJ. R. Mosig

2000. p. 1 - 14.

Infoscience

Trustworthy AI in medical image analysis: A unified perspective built on robustness and layers of trust

M. A. ZuluagaI. IšgumM. Bach Cuadra

Current Opinion in Biomedical Engineering. 2026. DOI : 10.1016/j.cobme.2026.100649.

Towards contrast- and pathology-agnostic clinical fetal brain MRI segmentation using SynthSeg

Z. ShangM. KaandorpK. PayetteM. F. GarciaA. Ford  et al.

NeuroImage. 2026. DOI : 10.1016/j.neuroimage.2026.121729.

Physics-Informed Joint Multi-TE Super-Resolution with Implicit Neural Representation for Robust Fetal T2 Mapping

B. BulutM. DanneckerT. SanchezS. Neves SilvaV. Zalevskyi  et al.

2026. 10th International Workshop on Preterm, Perinatal and Paediatric Image Analysis, Daejeon, Korea, Republic of, 2025-09-27 - 2025-09-27. p. 61 - 72. DOI : 10.1007/978-3-032-05997-0_6.

Enhancing Corpus Callosum Segmentation in Fetal MRI via Pathology-Informed Domain Randomization

M. Grifell I PlanaV. ZalevskyiL. SchmidtY. GomezT. Sanchez  et al.

2026. 10th International Workshop on Preterm, Perinatal and Paediatric Image Analysis, Daejeon, Korea, Republic of, 2025-09-27 - 2025-09-27. p. 48 - 60. DOI : 10.1007/978-3-032-05997-0_5.

Automatic Quality Control in Multi-centric Fetal Brain MRI Super-Resolution Reconstruction

T. SanchezV. ZalevskyiA. MihailovG. Martí JuanE. Eixarch  et al.

2026. 10th International Workshop on Preterm, Perinatal and Paediatric Image Analysis, Daejeon, Korea, Republic of, 2025-09-27 - 2025-09-27. p. 3 - 14. DOI : 10.1007/978-3-032-05997-0_1.

Ground-Truth Effects in Learning-Based Fiber Orientation Distribution Estimation in Neonatal Brains

R. LinH. KebiriA. GholipourY. ChenJ. P. Thiran  et al.

2025. 15th International Workshop, CDMRI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, 2024-10-06 - 2024-10-06. p. 24 - 34. DOI : 10.1007/978-3-031-86920-4_3.

A dataset of synthetic, maturation-informed magnetic resonance images of the human fetal brain

H. LajousA. Le Boeuf FlóP. M. GordalizaO. EstebanF. Marques  et al.

Scientific data. 2025. DOI : 10.1038/s41597-025-04926-9.

Exploiting XAI Maps to Improve MS Lesion Segmentation and Detection in MRI

F. SpagnoloN. MolchanovaM. Ocampo-PinedaL. Melie-GarciaM. Bach Cuadra  et al.

2025. 9th International Skin Imaging Collaboration Workshop, International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, Embodied AI and Robotics for HealTHcare Workshop and MICCAI Workshop on Distributed, Collaborative and Federated Learning held at International conference on Medical Image Computing and Computer Assisted Intervention, Marrakesh, Morocco, 2024-10-06 - 2024-10-10. p. 121 - 131. DOI : 10.1007/978-3-031-77610-6_12.

Assessing workflow impact and clinical utility of AI-assisted brain aneurysm detection: A multi-reader study

T. Di NotoS. JankowskiF. PuccinelliG. MarieS. Tourbier  et al.

NeuroImage: Clinical. 2025. DOI : 10.1016/j.nicl.2025.103835.

Fluid and White Matter Suppression contrasts MRI improves Deep Learning detection of Multiple Sclerosis Cortical Lesions

P. M. GordalizaJ. MüllerA. CagolN. MolchanovaF. La Rosa  et al.

NeuroImage: Clinical. 2025. DOI : 10.1016/j.nicl.2025.103818.

Biometry and volumetry in multi-centric fetal brain magnetic resonance imaging: assessing the bias of super-resolution reconstruction

T. SanchezA. MihailovM. KoobN. GirardA. Manchon  et al.

Pediatric Radiology. 2025. DOI : 10.1007/s00247-025-06347-7.

Domain shift, domain adaptation, and generalization: A focus on MRI

J. RichiardiV. RavanoN. MolchanovaP. Macías GordalizaT. Kober  et al.

Trustworthy AI in Medical Imaging; Academic Press, 2025. p. 127 - 151.

Assessing Data Quality on Fetal Brain MRI Reconstruction: A Multi-site and Multi-rater Study

T. SanchezA. MihailovY. GomezG. M. JuanE. Eixarch  et al.

2025. 9th International Workshop on Perinatal, Preterm and Paediatric Image Analysis, Marrakesh, Morocco, 2024-10-06 - 2024-10-06. p. 46 - 56. DOI : 10.1007/978-3-031-73260-7_5.

A roadmap towards standardized neuroimaging approaches for human thalamic nuclei

S. SegobinR. A. HaastV. J. KumarA. LellaA. Alkemade  et al.

Nature reviews. Neuroscience. 2024. DOI : 10.1038/s41583-024-00867-1.

Automated Quantitative Susceptibility and Morphometry MR Study: Feasibility and Interrelation Between Clinical Score, Lesion Load, Deep Grey Matter and Normal-Appearing White Matter in Multiple Sclerosis

G. ManassehT. HilbertM. J. FartariaJ. DeverdunM. B. Cuadra  et al.

Diagnostics. 2024. DOI : 10.3390/diagnostics14232669.

Cross-Age and Cross-Site Domain Shift Impacts on Deep Learning-Based White Matter Fiber Estimation in Newborn and Baby Brains

R. LinA. GholipourJ.-P. ThiranD. KarimiH. Kebiri  et al.

2024. 2024 IEEE International Symposium on Biomedical Imaging (ISBI), Athens, Greece, 2024-05-27 - 2024-05-30. p. 1 - 5. DOI : 10.1109/ISBI56570.2024.10635347.

Robust Estimation of the Microstructure of the Early Developing Brain Using Deep Learning

H. KebiriA. GholipourR. LinL. VasungD. Karimi  et al.

2023. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, Vancouver, Canada, October 8-12, 2023. p. 293 - 303. DOI : 10.1007/978-3-031-43990-2_28.

Streamline RimNet: Tools for Automatic Classification of Paramagnetic Rim Lesions in MRI of Multiple Sclerosis

J. NajmP. Macias GordalizaG. BarqueroF. La RosaN. Molchanova  et al.

2023.

Toward a joint automated assessment of cortical and paramagnetic rim lesions with 7T MRI

F. La RosaE. S. BeckM. WynenO. Al-LouziP. Sati  et al.

2022. 38th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis, Amsterdam, NETHERLANDS, Oct 26-28, 2022. p. 259 - 259.

Fluid and White Matter Suppression New Sensitive 3 T Magnetic Resonance Imaging Contrasts for Cortical Lesion Detection in Multiple Sclerosis

J. MullerF. La RosaJ. BeaumontC. TsagkasR. Rahmanzadeh  et al.

Investigative Radiology. 2022. DOI : 10.1097/RLI.0000000000000877.

A multi-scale probabilistic atlas of the human connectome

Y. Aleman-GomezA. GriffaJ.-C. HoudeE. NajdenovskaS. Magon  et al.

Scientific Data. 2022. DOI : 10.1038/s41597-022-01624-8.

Through-Plane Super-Resolution With Autoencoders in Diffusion Magnetic Resonance Imaging of the Developing Human Brain

H. KebiriE. J. Canales-RodriguezH. LajousP. de DumastG. Girard  et al.

Frontiers In Neurology. 2022. DOI : 10.3389/fneur.2022.827816.

Editorial: Computational Neuroimage Analysis Tools for Brain (Diseases) Biomarkers

D. M. SimaM. Bach CuadraT. B. DyrbyK. Van Leemput

Frontiers In Neuroscience. 2022. DOI : 10.3389/fnins.2022.841807.

Connectome Mapper 3: A Flexible and Open-Source Pipeline Software for Multiscale Multimodal Human Connectome Mapping

S. TourbierJ. Rue QueraltK. GlombY. Aleman-GomezE. Mullier  et al.

Journal of Open Source Software. 2022. DOI : 10.21105/joss.04248.

Slice Estimation in Diffusion MRI of Neonatal and Fetal Brains in Image and Spherical Harmonics Domains Using Autoencoders

H. KebiriG. GirardY. Aleman-GomezT. YuA. Jakab  et al.

2022. 13th International Workshop on Computational Diffusion MRI (CDMRI), Singapore, SINGAPORE, Sep 22, 2022. p. 3 - 13. DOI : 10.1007/978-3-031-21206-2_1.

BMAT: An open-source BIDS managing and analysis tool

C. Vanden BulckeM. WynenJ. DetobelF. La RosaM. Absinta  et al.

Neuroimage-Clinical. 2022. DOI : 10.1016/j.nicl.2022.103252.

Combining Model Driven and Data Driven Approaches for Inverse Problems in Parameter Estimation and Image Reconstruction: From Modelling to Validation

T. Yu / J.-P. ThiranM. Bach Cuadra (Dir.)

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-9693.

Deep learning-based analysis of multiple sclerosis lesions with high and ultra-high field MRI

F. La Rosa / J.-P. ThiranM. Bach Cuadra (Dir.)

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-9571.

An assessment of intra-scanner reproducibility of myelin-sensitive MRI measures

R. RahmanzadehM. WeigelP. -J. LuL. Melie-GarciaT. D. Nguyen  et al.

2021. p. 430 - 431.

Automated detection of cortical lesions with single and multi-contrast 7T MRI

F. La RosaE. S. BeckJ. MaranzanoJ. -P. ThiranC. Granziera  et al.

2021. p. 458 - 459.

CLaiMS-Net: cortical lesions assessment in multiple sclerosis patients via a convolutional neural network and a single 3T MRI acquisition

F. La RosaP. -J. LuR. RahmanzadehA. CagolM. Barakovic  et al.

2021. p. 457 - 458.

Cortical lesion detection using FLAWS in multiple sclerosis

J. MullerR. RahmanzadehC. TsagkasM. BarakovicP. -J. Lu  et al.

2021. p. 433 - 434.

Chronic White Matter Inflammation and Serum Neurofilament Levels in Multiple Sclerosis

P. MaggiJ. KuhleS. SchadelinF. van der MeerM. Weigel  et al.

Neurology. 2021. DOI : 10.1212/WNL.0000000000012326.

Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging

R. RahmanzadehP.-J. LuM. BarakovicM. WeigelP. Maggi  et al.

Brain. 2021. DOI : 10.1093/brain/awab088.

Automated assessment of paramagnetic rim lesions in multiple sclerosis patients with 3T and 7T MP2RAGE

F. La RosaG. BarqueroO. Al-LouziB. M. Maréchal MortametT. Kober  et al.

2021. The 2021 ISMRM & SMRT Annual Meeting & Eshibition, [Online], 15-20 may, 2021.

GAMER-MRI in Multiple Sclerosis Identifies the Diffusion-Based Microstructural Measures That Are Most Sensitive to Focal Damage: A Deep-Learning-Based Analysis and Clinico-Biological Validation

P.-J. LuM. BarakovicM. WeigelR. RahmanzadehR. Galbusera  et al.

Frontiers In Neuroscience. 2021. DOI : 10.3389/fnins.2021.647535.

MPRAGE to MP2RAGE UNI translation via generative adversarial network improves the automatic tissue and lesion segmentation in multiple sclerosis patients

F. La RosaT. YuG. BarqueroJ.-P. ThiranC. Granziera  et al.

Computers in Biology and Medicine. 2021. DOI : 10.1016/j.compbiomed.2021.104297.

Quantitative Evaluation of Enhanced Multi-plane Clinical Fetal Diffusion MRI with a Crossing-Fiber Phantom

H. KebiriH. LajousY. Aleman-GomezG. GirardE. C. Rodriguez  et al.

2021. 12th International Workshop on Computational Diffusion MRI (CDMRI), ELECTR NETWORK, Oct 01, 2021. p. 12 - 22. DOI : 10.1007/978-3-030-87615-9_2.

Simulated Half-Fourier Acquisitions Single-shot Turbo Spin Echo (HASTE) of the Fetal Brain: Application to Super-Resolution Reconstruction

H. LajousT. HilbertC. W. RoyS. TourbierP. de Dumast  et al.

2021. 3rd Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE) / 6th International Workshop on Preterm, Perinatal and Paediatric Image Analysis (PIPPI), ELECTR NETWORK, Sep 27-Oct 01, 2021. p. 157 - 167. DOI : 10.1007/978-3-030-87735-4_15.

GAMER MRI: Gated-attention mechanism ranking of multi-contrast MRI in brain pathology

P.-J. LuY. YooR. RahmanzadehR. GalbuseraM. Weigel  et al.

Neuroimage-Clinical. 2021. DOI : 10.1016/j.nicl.2020.102522.

Model-informed machine learning for multi-component T2 relaxometry

T. YuE. J. Canales RodriguezM. PizzolatoG. F. PireddaT. Hilbert  et al.

Medical Image Analysis. 2020. DOI : 10.1016/j.media.2020.101940.

RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis

G. BarqueroF. La RosaH. KebiriP.-J. LuR. Rahmanzadeh  et al.

NeuroImage: Clinical. 2020. DOI : 10.1016/j.nicl.2020.102412.

Evolution of Cortical and White Matter Lesion Load in Early-Stage Multiple Sclerosis: Correlation With Neuroaxonal Damage and Clinical Changes

R.-A. TodeaP.-J. LuM. J. FartariaG. BonnierR. Du Pasquier  et al.

Frontiers In Neurology. 2020. DOI : 10.3389/fneur.2020.00973.

Partial-volume modeling reveals reduced gray matter in specific thalamic nuclei early in the time course of psychosis and chronic schizophrenia

Y. Aleman-GomezE. NajdenovskaT. RoineM. J. FartariaE. J. Canales-Rodriguez  et al.

Human Brain Mapping. 2020. DOI : 10.1002/hbm.25108.

Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: a deep learning method based on FLAIR and MP2RAGE

F. La RosaA. AbdulkadirM. J. FartariaR. RahmanzadehP.-J. Lu  et al.

NeuroImage: Clinical. 2020. DOI : 10.1016/j.nicl.2020.102335.

Normalization of aberrant pretherapeutic dynamic functional connectivity of extrastriate visual system in patients who underwent thalamotomy with stereotactic radiosurgery for essential tremor: a resting-state functional MRI study

C. TuleascaT. A. W. BoltonJ. RegisE. NajdenovskaT. Witjas  et al.

Journal Of Neurosurgery. 2020. DOI : 10.3171/2019.2.JNS183454.

Higher Order Spherical Harmonics Reconstruction of Fetal Diffusion MRI With Intensity Correction

M. DeprezA. PriceD. ChristiaensG. L. EstrinL. Cordero-Grande  et al.

IEEE Transactions on Medical Imaging (T-MI). 2020. DOI : 10.1109/TMI.2019.2943565.

CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis

P. MaggiM. J. FartariaJ. JorgeF. La RosaM. Absinta  et al.

Nmr In Biomedicine. 2020. DOI : 10.1002/nbm.4283.

Improved susceptibility-weighted imaging for high contrast and resolution thalamic nuclei mapping at 7T

J. JorgeF. GretschE. NajdenovskaC. TuleascaM. Levivier  et al.

Magnetic Resonance in Medicine. 2020. DOI : 10.1002/mrm.28197.

Quantification in Musculoskeletal Imaging Using Computational Analysis and Machine Learning: Segmentation and Radiomics

M. B. CuadraP. Omoumi

Seminars In Musculoskeletal Radiology. 2020. DOI : 10.1055/s-0039-3400268.

An Anatomically-Informed 3D CNN for Brain Aneurysm Classification with Weak Labels

T. Di NotoG. MarieS. TourbierY. Aleman-GomezG. Saliou  et al.

2020. 3rd International Workshop on Machine Learning in Clinical Neuroimaging (MLCN) / 2nd International Workshop on Radiomics and Radiogenomics in Neuro-Oncology using AI (RNO-AI), Lima, PERU, OCT 04-08, 2020. p. 56 - 66. DOI : 10.1007/978-3-030-66843-3_6.

Resting-state functional MRI for functional neurosurgery: seeing the light?

C. TuleascaJ. RegisE. NajdenovskaT. WitjasN. Girard  et al.

Journal Of Neurosurgery. 2019. DOI : 10.3171/2019.1.JNS1995.

Deep learning-based detection of cortical lesions in multiple sclerosis patients with FLAIR, DIR, and MP2RAGE MRI sequences

F. La RosaM. J. FartariaA. AbdulkadirR. RahmanzadehP.-J. Lu  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS), Stockholm, Sweden, September 11-13, 2019. p. 131 - 356. DOI : 10.1177/1352458519868078.

A fully automated approach for differential diagnosis support in multiple sclerosis based on the central vein sign

M. J. FartariaP. MaggiP. SatiD. S. ReichC. Granziera  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Stockholm, SWEDEN, Sep 11-13, 2019. p. 133 - 133.

Deep learning-based detection of cortical lesions in multiple sclerosis patients with FLAIR, DIR, and MP2RAGE MRI sequences

F. La RosaM. J. FartariaA. AbdulkadirR. RahmanzadehP. -J. Lu  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Stockholm, SWEDEN, Sep 11-13, 2019. p. 206 - 207.

Axonal damage explains part of and extends beyond the diffuse pathology evidenced by T1 mapping in normal-appearing white matter of multiple sclerosis patients

R. RahmanzadehP. -J. LuM. WeigelR. GalbuseraF. La Rosa  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Stockholm, SWEDEN, Sep 11-13, 2019. p. 683 - 684.

Deep learning analysis applied to multi-parametric advanced MRI shows higher myelin content and neurite density in juxtacortical lesions compared to periventricular lesions

P. -J. LuR. RahmanzadehR. GalbuseraB. OdryM. Weigel  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Stockholm, SWEDEN, Sep 11-13, 2019. p. 241 - 242.

Axonal and myelin injury in white matter and cortex of relapsing-remitting and progressive multiple sclerosis patients: a combined myelin water and multi-shell diffusion MRI study

R. RahmanzadehP. -J. LuM. WeigelR. GalbuseraT. D. Nguyen  et al.

2019. 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Stockholm, SWEDEN, Sep 11-13, 2019. p. 682 - 683.

Episodic memory decline in Parkinson' s disease: relation with white matter hyperintense lesions and influence of quantification method

V. DunetM. J. FartariaJ. DeverdunE. Le BarsF. Maury  et al.

Brain Imaging And Behavior. 2019. DOI : 10.1007/s11682-018-9909-x.

Longitudinal analysis of white matter and cortical lesions in multiple sclerosis

M. J. FartariaT. KoberC. GranzieraM. B. Cuadra

Neuroimage-Clinical. 2019. DOI : 10.1016/j.nicl.2019.101938.

Letter: Deep Brain Stimulation of the Pedunculopontine Nucleus Area in Parkinson Disease: Magnetic Resonance Imaging- Based Anatomoclinical Correlations and Optimal Target

C. TuleascaJ. RegisE. NajdenovskaT. WitjasN. Girard  et al.

Neurosurgery. 2019. DOI : 10.1093/neuros/nyy516.

Pretherapeutic resting-state fMRI profiles are associated with MR signature volumes after stereotactic radiosurgical thalamotomy for essential tremor

C. TuleascaJ. RegisE. NajdenovskaT. WitjasN. Girard  et al.

Journal Of Neurosurgery. 2018. DOI : 10.3171/2018.7.GKS18752.

In-vivo probabilistic atlas of human thalamic nuclei based on diffusion-weighted magnetic resonance imaging

E. NajdenovskaY. Aleman-GomezG. BattistellaM. DescoteauxP. Hagmann  et al.

Scientific Data. 2018. DOI : 10.1038/sdata.2018.270.

Personalized Anatomic Eye Model From T1-Weighted Volume Interpolated Gradient Echo Magnetic Resonance Imaging of Patients With Uveal Melanoma

H.-G. NguyenR. SznitmanP. MaederA. SchalenbourgM. Peroni  et al.

International Journal Of Radiation Oncology Biology Physics. 2018. DOI : 10.1016/j.ijrobp.2018.05.004.

Automated assessment of new and enlarged white matter and cortical lesions in early multiple sclerosis

M. J. FartariaG. BonnierT. KoberM. B. CuadraC. Granziera

2018. 34th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS), Berlin, GERMANY, Oct 10-12, 2018. p. 570 - 570.

Accuracy versus reproducibility: comprehensive assessment of four automated methods for multiple sclerosis lesion segmentation

M. J. FartariaR. Corredor-JerezJ. RichiardiB. MarechalC. Granziera  et al.

2018. 34th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS), Berlin, GERMANY, Oct 10-12, 2018. p. 359 - 359.

Differential diagnosis of multiple sclerosis with machine learning-based central vein sign recognition

J. RichiardiP. MaggiM. J. FartariaF. La RosaJ. Jorge  et al.

2018. 34th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS), Berlin, GERMANY, Oct 10-12, 2018. p. 530 - 531.

Shallow vs deep learning architectures for white matter lesion segmentation in the early stages of multiple sclerosis

F. La RosaM. J. FartariaT. KoberJ. RichiardiC. Granziera  et al.

2018. BrainLes Workshop, MICCAI 2018, Granada, Spain, September 16, 2018. DOI : 10.1007/978-3-030-11723-8_14.

Ocular Structures Segmentation from Multi-sequences MRI Using 3D Unet with Fully Connected CRFs

Huu-Giao NguyenA. PicaP. MaederA. SchalenbourgM. Peroni  et al.

2018. 1st International Workshop on Computational Pathology (COMPAY) / 5th International Workshop on Ophthalmic Medical Image Analysis (OMIA), Granada, SPAIN, Sep 16-20, 2018. p. 167 - 175. DOI : 10.1007/978-3-030-00949-6_20.

An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease

D. SchmitterA. RocheB. MaréchalD. RibesA. Abdulkadir  et al.

NeuroImage: Clinical. 2015. DOI : 10.1016/j.nicl.2014.11.001.

Evaluation and Comparison of Current Fetal Ultrasound Image Segmentation Methods for Biometric Measurements: A Grand Challenge

S. RuedaS. FathimaC. L. KnightM. YaqubA. T. Papageorghiou  et al.

IEEE Transactions on Medical Imaging (T-MI). 2014. DOI : 10.1109/Tmi.2013.2276943.

Volume-based vs. voxel-based brain morphometry in Alzheimer's disease prediction

A. RocheD. A. SchmitterB. M. Maréchal MortametD. Ribes LemayA. Abdulkadir  et al.

2014. 23rd International Society for Magnetic Resonance in Medicine (ISMRM) Conference, Milan, Italy, May 10-16, 2014.

MBIS: Multivariate Bayesian Image Segmentation tool

O. EstebanG. WollnyS. GorthiM.-J. Ledesma-CarbayoJ.-P. Thiran  et al.

Computer Methods And Programs In Biomedicine. 2014. DOI : 10.1016/j.cmpb.2014.03.003.

Simulation-based evaluation of susceptibility distortion correction methods in diffusion MRI for connectivity analysis

O. EstebanA. DaducciE. CaruyerK. O'BrienL. Carbayo  et al.

2014. IEEE 11th International Symposium on Biomedical Imaging - From Nano to Macro (ISBI), Beijing, China, April 29 - May 2, 2014. p. 738 - 741. DOI : 10.1109/ISBI.2014.6867976.

A NEW APPROACH FOR CEREBELLO-THALAMIC MOTOR NETWORK EVALUATION IN ASYMPTOMATIC PREMUTATION CARRIERS AT RISK FOR FXTAS

G. BattistellaN. GhazalehE. FornariE. NajdenovskaM. Bach Cuadra  et al.

Human Brain Mapping, Seattle, USA, June 16-20, 2013.

Multi-atlas fusion methods for segmentation of head and neck lymph nodes for radiotherapy planning

S. GorthiM. Bach CuadraJ. Villafruela VicarioP.-A. TercierJ.-P. Thiran  et al.

2013. 2nd ESTRO Forum, Geneva, April 19-23, 2013.

Weighted Shape-Based Averaging With Neighborhood Prior Model for Multiple Atlas Fusion-Based Medical Image Segmentation

S. GorthiM. Bach CuadraP.-A. TercierA. S. AllalJ.-P. Thiran

IEEE Signal Processing Letters. 2013. DOI : 10.1109/LSP.2013.2279269.

Towards a connectome mapping pipeline for neonates using high-resolution MP2RAGE and DTI

A. PauliJ. SchneiderM. Bach CuadraA. GriffaE. Fischi Gomez  et al.

2013. 21st Annual Meeting International Society for Magnetic Resonance in Medicine, Salt Lake City, Utah, USA, April 20-26,2013.

Evaluation of Atlas Fusion Strategies for Segmentation of Head and Neck Lymph Nodes for Radiotherapy Planning

S. GorthiM. Bach CuadraU. SchickP.-A. TercierA. S. Allal  et al.

2012. IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, May 2-5, 2012. p. 1276 - 1279. DOI : 10.1109/ISBI.2012.6235795.

How to Measure Cortical Folding from MR Images: a Step-by-Step Tutorial to Compute Local Gyrification Index

M. SchaerM. Bach CuadraN. SchmanskyB. FischlJ.-P. Thiran  et al.

Journal of Visualized Experiments. 2012. DOI : 10.3791/3417.

Brain tissue segmentation on diffusion weighted magnetic resonance data

O. Esteban-SanzS. GorthiG. WollnyA. DaducciM. J. Ledesma-Carbayo  et al.

2012. IEEE International Symposium on Biomedical Imaging (ISBI) 2012, Barcelona, Spain, 2-5 May 2012.

Atlas-free brain tissue segmentation using a single T1-weighted MRI acquisition

T. KoberA. RocheO. Esteban-SanzS. GorthiD. Ribes  et al.

2012. International Society for Magnetic Resonance in Medicine (ISMRM), Melbourne, Australia, May 5-11.

STATISTICAL MODELING OF THE EYE FOR MULTIMODAL TREATMENT PLANNING FOR EXTERNAL BEAM RADIOTHERAPY OF INTRAOCULAR TUMORS

M. RUEEGSEGGERM. Bach CuadraA. PicaC. AMSTUTZT. RUDOLPH  et al.

International Journal of Radiation Oncology, Biology, Physics.. 2012. DOI : 10.1016/j.ijrobp.2012.05.040.

Quantitative morphometry analysis of the fetal brain using clinical MR imaging

M. Bach CuadraG. V. BonannoL. GuibaudS. EliezJ.-P. Thiran  et al.

19th Annual Meeting and Exhibition ISMRM, Montreal, Quebec, Canada, May 7-13.

Towards a diffusion image processing validation and accuracy prediction framework

F. Pizzorni FerrareseA. DaducciM. Bach CuadraA. LemkaddemC. Granziera  et al.

2011. IEEE International Conference on Image Processing, Brussel, Belgium, September 11-14, 2011. p. 2269 - 2272. DOI : 10.1109/ICIP.2011.6116091.

Comparison of tissue classification models for automatic brain MR segmentation

D. RibesB. MortametM. Bach CuadraC. JackR. Meuli  et al.

19th Annual Meeting and Exhibition ISMRM, Montreal, Quebec, Canada, May 7-13, 2011.

Fusion of Multi-Atlas Segmentations with Spatial Distribution Modeling

S. GorthiM. Bach CuadraU. SchickP.-A. TercierA. S. Allal  et al.

2011. MICCAI Worskshop on Multi-Atlas Labeling and Statistical Fusion, Toronto, Canada, September, 18-22, 2011.

Review on Atlas-based Segmentation of Magnetic Resonance Brain Images

M. Cabezas GrebolA. OliverX. LladoJ. FreixenetM. Bach Cuadra

Computer Methods and Programs in Biomedicine. 2011. DOI : 10.1016/j.cmpb.2011.07.015.

Model-based Segmentation and Fusion of 3D Computed Tomography and 3D Ultrasound of the Eye for Radiotherapy Planning

M. Bach CuadraS. GorthiF. I. KarahanogluB. PaquierA. Pica  et al.

Computational Vision and Medical Image Processing; Springer, 2011. p. 247 - 263.

A pipeline approach with spatial information for segmenting multiple sclerosis lesions on brain magnetic resonance imaging

M. Cabezas GrebolM. Bach CuadraA. OliverX. LladóJ. Freixenet  et al.

5th Joint triennial congress of the European and Americas committees for treatment and research in multiple sclerosis, Amsterdam, The Netherlands, October 19-22, 2011.

On the Convergence of EM-Like Algorithms for Image Segmentation using Markov Random Fields

A. RocheD. RibesM. Bach CuadraG. Krüger

Medical Image Analysis -Elsevier-. 2011. DOI : 10.1016/j.media.2011.05.002.

3D Ultrasound Tumor Segmentation and Fusion with CT for Stereotactic Radiation Therapy Planning of Retinoblastoma

A. PicaF. I. KarahanogluA.-R. CiurteS. GorthiA. Balmer  et al.

10th Biennial Congress and Exhibition of the International Stereotactic Radio surgery Society, Paris, France, May 8-12, 2011.

Active Deformation Fields: Dense Deformation Field Estimation for Atlas-based Segmentation using the Active Contour Framework

S. GorthiV. DuayX. BressonM. Bach CuadraS. Castro  et al.

Medical Image Analysis. 2011. DOI : 10.1016/j.media.2011.05.008.

Comparison of Energy Minimization Methods for 3-D Brain Tissue Classification

S. GorthiJ.-P. ThiranM. Bach Cuadra

2011. IEEE International Conference on Image Processing, Brussels, Belgium, September 11-14, 2011. p. 57 - 60. DOI : 10.1109/ICIP.2011.6116615.

An Efficient Segmentation Method for Ultrasound Images based on a Semi-supervised Approach and Patch-based Features

A.-R. CiurteN. HouhouS. NedevschiA. PicaF. Munier  et al.

2011. 8th IEEE International Symposium on Biomedical Imaging, Chicago, Illinois, USA, March 30th - April 2nd, 2011. p. 969 - 972. DOI : 10.1109/ISBI.2011.5872564.

Exporting Contours to DICOM-RTSTRUCT

S. GorthiM. Bach CuadraJ.-P. Thiran

Kitware Newsletter.

A post-processing pipeline to reconstruct the developing fetal brain using low-resolution MRI

M. SchaerM. Bach CuadraS. EliezL. GuibaudJ.-P. Thiran

16th Annual Meeting of the Organization for Human Brain Mapping, Barcelona, Spain, June 6th-10th, 2010.

Central and Cortical Gray Mater Segmentation of Magnetic Resonance Images of the Fetal Brain

M. Bach CuadraM. SchaerG. V. BonannoA. AndréL. Guibaud  et al.

ISMRM-ESMRMB Joint Annual Meeting, Stockholm, Sweden, 1st-7th May, 2010.

Regional cortical volumes and congenital heart disease: a MRI study in 22q11.2 deletion syndrome

M. SchaerB. GlaserM.-C. OttetM. SchneiderM. Bach Cuadra  et al.

Journal of Neurodevelopmental Disorders. 2010. DOI : 10.1007/s11689-010-9061-4.

Multi-Atlas based Segmentation of Head and Neck CT Images using Active Contour Framework

S. GorthiM. Bach CuadraU. SchickP.-A. TercierA. S. Allal  et al.

2010. MICCAI workshop on 3D Segmentation Challenge for Clinical Applications, Beijing, China, September 20-24, 2010.

Deviant trajectories of cortical maturation in 22q11.2 deletion syndrome (22q11DS): A cross-sectional and longitudinal study

M. SchaerM. DebbanéM. Bach CuadraM.-C. OttetB. Glaser  et al.

Schizophrenia Research. 2009. DOI : 10.1016/j.schres.2009.09.016.

How can physicians quantify brain degeneration?

M. Bach CuadraJ.-P. ThiranF. Marques

Applied Signal Processing: A MATLAB-Based Proof of Concept; MA: Springer, 2009. p. 411 - 450.

Exporting Contours to DICOM-RT Structure Set

S. GorthiM. Bach CuadraJ.-P. Thiran

Insight Journal. 2009.

A Multimodal Evaluation Method for Medical Image Segmentation

R. CardenesR. de Luis GarciaM. Bach Cuadra

Computerized Medical Imaging and Graphics. 2009. DOI : 10.1016/j.cmpb.2009.04.009.

Active Contour-Based Segmentation of Head and Neck with Adaptive Atlas Selection

S. GorthiV. DuayM. Bach CuadraP.-A. TercierA. S. Allal  et al.

2009. MICCAI workshop on 3D Segmentation Challenge for Clinical Applications, London, September 20-24, 2009.

Segmentation of head and neck lymph node regions for radiotherapy planning, using active contour based atlas registration

S. GorthiV. DuayN. HouhouM. Bach CuadraU. Schick  et al.

IEEE Journal of selected topics in signal processing. 2009. DOI : 10.1109/JSTSP.2008.2011104.

Model-based Segmentation and Image Fusion of 3D Computed Tomography and 3D Ultrasound of the Eye for Radiotherapy Planning

M. Bach CuadraS. GorthiF. I. KarahanogluF. SalvadorA. Pica  et al.

2009. VIPIMAGE, Porto, Portugal, October 14-16, 2009. p. 53 - 58.

Brain tissue segmentation of fetal MR images

M. Bach CuadraM. SchaerA. AndreL. GuibaudS. Eliez  et al.

2009. Workshop on Image Analysis for Developing Brain, in 12th International Conference on Medical Image Computing and Computer Assisted Intervention, Londond, UK, September 20-24, 2009.

Congenital heart disease affects local gyrification in 22q11.2 deletion syndrome

M. SchaerB. GlaserM. Bach CuadraM. DebbaneJ.-P. Thiran  et al.

Developmental Medicine and Child Neurology. 2009. DOI : 10.1111/j.1469-8749.2009.03281.x.

An Active Contour-based Atlas Registration Model for Automatic Subthalamic Nucleus Targeting on MRI: Method and Validation

V. DuayX. BressonF. J. Sanchez CastroC. PolloM. Bach Cuadra  et al.

2008. 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), New York, NY, USA, September 6-10, 2008. p. 980 - 988. DOI : 10.1007/978-3-540-85990-1.

Bi-planar 2D-to-3D Registration in Fourier Domain for Stereoscopic X-Ray Motion Tracking

D. ZossoB. Le CallennecM. Bach CuadraK. AminianB. M. Jolles  et al.

2008. SPIE Medical Imaging 2008, San Diego, California, USA, 16 - 21 February 2008. DOI : 10.1117/12.769469.

Atlas-based Segmentation

M. Bach CuadraV. DuayJ.-P. Thiran

Biomedical Image Analysis: Methodologies and Applications; Springer, 2008. p. 221 - 244.

A Surface-based approach to Quantify Local Cortical Gyrification

M. SchaerM. Bach CuadraL. TamaritF. LazeyrasS. Eliez  et al.

IEEE Transactions on Medical Imaging (T-MI). 2008. DOI : 10.1109/TMI.2007.903576.

Fast Bias Field Correction for 9.4 Tesla Magnetic Resonance Imaging

X. PenaM. Bach CuadraN. KunzN. JustR. Gruetter  et al.

2008. 16th European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, August 25-29, 2008.

Brain Surface Segmentation of Magnetic Resonance Images of the Fetus

D. FerrarioM. Bach CuadraM. SchaerN. HouhouD. Zosso  et al.

2008. 16th European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, August 25-29, 2008.

Registration of Multiple Regions Derived from the Optical Flow Model and the Active Contour Framework

V. DuayX. BressonN. HouhouM. Bach CuadraJ.-P. Thiran

2007. 15th European Signal Processing Conference (EUSIPCO), Poznan, Poland, Poznan, Poland, September, 3-7, 2007.

Time-Varying Segmentation for Mapping of Land Cover Changes

F. AspertM. Bach-CuadraA. CantoneF. HoleczJ.-P. Thiran

2007. ENVISAT Symposium, Montreux, Switerland, May 2007.

Bias Field Correction in Magnetic Resonance Images of a Rat Brain

X. PeñaM. Bach CuadraN. JustJ.-P. ThiranR. Gruetter

2007

Direct Fourier Tomographic Reconstruction Image-To-Image Filter

D. ZossoM. Bach CuadraJ.-P. Thiran

The Insight Journal. 2007.

Multimodal Evaluation for Medical Image Segmentation

R. CardenesM. Bach CuadraY. ChiI. MarrasR. de Luis  et al.

2007. The 12th International Conference on Computer Analysis of Images and Patterns (CAIP), Vienna, Austria, 27th - 29th August 2007. p. 229 - 236. DOI : 10.1007/978-3-540-74272-2.

Correction to "Comparison and Validation of Tissue Modelization and Statistical Classification Methods in T1-Weighted MR Brain Images"

M. Bach CuadraL. CammounT. ButzO. CuisenaireJ. Thiran

IEEE Transactions on Medical Imaging (T-MI). 2006. DOI : 10.1109/TMI.2006.869963.

Dense Deformation Field Estimation for Atlas-based Segmentation of Pathological MR Brain Images

M. Bach CuadraM. De CraeneV. DuayB. MacqC. Pollo  et al.

Computer Methods and Programs in Biomedicine. 2006. DOI : 10.1016/j.cmpb.2006.08.003.

Dense Deformation Field Estimation for Atlas Registration using the Active Contour Framework

V. DuayM. Bach CuadraX. BressonJ. Thiran

2006.

A New Method For Measuring Cortical Folding In A 3D Space From MR Images

M. SchaerL. TamaritM. Bach CuadraF. LazeyrasJ. Thiran  et al.

2006

Determinants of cortical gray matter volume: hypothesis based on developmental cohorts with normal and abnormal cortical morphology

M. SchaerM. Bach CuadraJ. ThiranS. Eliez

2006

A Cross Validation Study of Deep Brain Stimulation Targeting: From Experts to Atlas-Based, Segmentation-Based and Automatic Registration Algorithms

F. Sanchez CastroC. PolloR. MeuliP. MaederO. Cuisenaire  et al.

IEEE Transactions on Medical Imaging (T-MI). 2006. DOI : 10.1109/TMI.2006.882129.

Investigating individual differences in gray matter in healthy and neurodegenerated brains

B. MortametM. Bach Cuadra

2006

Exploiting Multi-Temporal Information for SAR Image Segmentation

F. AspertM. Bach-CuadraJ.-P. Thiran

2006

Comparison and Validation of Tissue Classification Methods in MR Images of the Brain

B. MortametM. Bach Cuadra

2006

Cross Validation of Experts Versus Registration Methods for Target Localization in Deep Brain Stimulation

F. Sanchez CastroC. PolloR. MeuliP. MaederM. Bach Cuadra  et al.

2005. p. 417 - 424. DOI : 10.1007/11566465_52.

Region-based Satellite Image Classification: Method and Validation

X. GigandetM. Bach CuadraA. PointetL. CammounR. Caloz  et al.

2005. DOI : 10.1109/ICIP.2005.1530521.

Segmentation of Brain Structures in Presence of a Space-Occupying Lesion

C. PolloM. Bach CuadraO. CuisenaireJ. VillemureJ. Thiran

Neuroimage. 2005. DOI : 10.1016/j.neuroimage.2004.10.004.

Comparison and Validation of Tissue Modelization and Statistical Classification Methods in T1-weighted MR Brain Images

M. Bach CuadraL. CammounT. ButzO. CuisenaireJ. Thiran

IEEE Transactions on Medical Imaging (T-MI). 2005. DOI : 10.1109/TMI.2005.857652.

Atlas-based Segmentation of Pathological MR Brain Images using a Model of Lesion Growth

M. Bach CuadraC. PolloA. BarderaO. CuisenaireJ. Villemure  et al.

IEEE Transactions on Medical Imaging (T-MI). 2004. DOI : 10.1109/TMI.2004.834618.

Satellite Image Segmentation and Classification

X. GigandetM. Bach CuadraJ. Thiran

2004

Validation of Tissue Modelization and Classification Techniques in T1-weighted MR Brain Images

M. Bach CuadraL. CammounT. ButzO. CuisenaireJ. Thiran

2004

Atlas-based segmentation and classification of magnetic resonance brain images

M. Bach Cuadra / J.-P. Thiran (Dir.)

Lausanne, EPFL, 2003. DOI : 10.5075/epfl-thesis-2875.

Atlas-Based Segmentation of Pathological Brain MR Images

M. Bach CuadraC. PolloA. BarderaO. CuisenaireJ. Villemure  et al.

2003. p. 14 - 17. DOI : 10.1109/ICIP.2003.1247026.

Atlas-Based Segmentation of Pathological Brains Using a Model of Tumor Growth

M. Bach CuadraJ. GomezP. HagmannC. PolloJ. Villemure  et al.

2002. Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002, 5th International Conference, Tokyo, Japan, September 25–28, 2002. p. 380 - 387. DOI : 10.1007/3-540-45786-0_47.

Validation of Tissue Modelization and Classification Techniques in T1-Weighted MR Brain Images

M. Bach CuadraB. PlatelE. SolanasT. ButzJ. Thiran

2002. MICCAI 2002 5th International Conference, Tokyo, Japan, September 25–28, 2002. p. 290 - 297. DOI : 10.1007/3-540-45786-0_36.

MIP: The ITS-EPFL Medical Image Processing Library

M. Bach CuadraT. ButzE. SolanasO. CuisenaireJ. Thiran

2002

Atlas-based Segmentation using a Model of Lesion Growth

M. Bach CuadraJ. Thiran

2002

Automatic Segmentation of Internal Structures of the Brain in MR Images using a Tandem of Affine and Non Rigid Registration of an Anatomical Brain Atlas

M. Bach CuadraO. CuisenaireR. MeuliJ. Thiran

2001. p. 1083 - 1086. DOI : 10.1109/ICIP.2001.958315.

A Comparative study of the input parameter de-embedding techniques for integral equation methods

E. SuterM. Bach CuadraJ. R. Mosig

2000. p. 1 - 14.

Teaching & PhD

Past EPFL PhD Students as codirector

Thomas Yu, Francesco La Rosa