Michaël Unser

michael.unser@epfl.ch 41 21 693 51 75 http://bigwww.epfl.ch/unser/index.html
41 21 693 51 75
EPFL
>
STI
>
STI-SMT
>
SMT-ENS
41 21 693 51 75
Local: BM 4136
EPFL
>
VPA
>
VPA-AVP-PGE
>
AVP-PGE-EDOC
>
EDEE-ENS
EPFL STI IMT LIB
BM 4136 (Bâtiment BM)
Station 17
CH-1015 Lausanne
41 21 693 51 75
41 21 693 11 85
Local: BM 4136
EPFL
>
STI
>
IMT
>
LIB
Web site: Site web: https://bigwww.epfl.ch/
41 21 693 51 75
EPFL
>
SB
>
SB-SMA
>
SMA-ENS
EPFL ENT-R CIBM-PC
BM 4136 (Bâtiment BM)
Station 17
CH-1015 Lausanne
41 21 693 51 75
Local: BM 4136
EPFL
>
VPA
>
VPA-AVP-CP
>
CIBM
>
CIBM-SP
Web site: Site web: https://www.cibm.ch/
41 21 693 51 75
EPFL
>
SV
>
SV-SSV
>
SSV-ENS
Web site: Site web: https://sv.epfl.ch/education
Domaines de compétences
Medical Imaging
Biological Imaging
Wavelets
Splines
Multiresolution
Research unit
Laboratoire d'imagerie biomédicaleEnseignement & Phd
Enseignement
Microengineering
Mathematics
Programmes doctoraux
Doctorants
Aziznejad Shayan, Bohra Pakshal Narendra, Debarre Thomas Jean, Gonçalves Garcia Barreto Campos Joaquim, Goujon Alexis Marie Frederic, Liu Yan, Lloréns Jover Icíar, Pham Thanh-An Michel,A dirigé les thèses EPFL de
Aguet François , Arigovindan Muthuvel , Badoual Anaïs Laure Marie-Thérèse , Baritaux Jean-Charles , Bostan Emrah , Bourquard Aurélien , Chaudhury Kunal Narayan , Dehghani Tafti Pouya , Delgado Gonzalo Ricard , Donati Laurène , Fageot Julien René , Feilner Manuela , Guerquin-Kern Matthieu , Gupta Harshit , Horbelt Stefan , Jacob Mathews , Jonic Slavica , Kamilov Ulugbek , Khalidov Ildar , Kybic Jan , Liebling Michael Stefan Daniel , Luisier Florian , Munoz Barrutia Maria Arrate , Nilchian Masih , Pad Pedram , Püspöki Zsuzsanna , Ramani Sathish , Schmitter Daniel Andreas , Sühling Michael , Uhlmann Virginie Sophie , Vonesch Cédric René Jean ,Cours
Sparse stochastic processes
Sparse stochastic processes are continuous-domain processes that admit a parsimonious representation in some matched wavelet-like basis. Such models are relevant for image compression, compressed sensing, and, more generally, for the derivation of statistical algorithms for solving ill-posed inverse problems.
This course is devoted to the study of the broad family of sparse processes that