Profile picture

Simone Deparis

EPFL AVP-E CePRO
RLC D1 650 (Rolex Learning Center)
Station 20
1015 Lausanne

EPFL SB MATH SCI-SB-SD
MA B2 477 (Bâtiment MA)
Station 8
1015 Lausanne

EPFL SB SMA-GE
MA B2 477 (Bâtiment MA)
Station 8
1015 Lausanne

EPFL SB SMA-GE
MA B2 477 (Bâtiment MA)
Station 8
1015 Lausanne

Expertise

Simone Deparis est professeur à l’EPFL, spécialisé en mathématiques appliquées, analyse numérique et didactique des mathématiques à l’université. Ses recherches portent à la fois sur la modélisation computationnelle pour les applications biomédicales et sur l’innovation pédagogique, avec un accent sur l’équité, l’auto-efficacité et la réforme de l’évaluation dans les grands cursus scientifiques.

Mission

Mes recherches portent sur les mathématiques appliquées et les sciences de l’apprentissage. En mathématiques appliquées, je développe des méthodes de modélisation et de simulation pour des systèmes complexes, notamment les écoulements cardiovasculaires et la physique des plasmas. En sciences de l’apprentissage, je m’intéresse à l’enseignement et à l’évaluation des mathématiques en première année d’études, avec un accent particulier sur l’impact de l’IA et le développement de l’auto-efficacité des étudiant·e·s.

Formation

Mathématiques appliquée

| Numerical analysis of axisymmetric flows and methods for fluid-structure interaction arising in blood flow simulation

2001 – 2004 EPFL
Dirigée par Alfio Quarteroni

Ingénierie Mathématiques

| Probabilité et Calcul Scientifique

1998 – 1999 Ecole Polytechnique Paris et EPFL

Mathématiques

|

1992 – 1997 ETH Zurich

Expériences professionnelles

Post-doc

Prix et distinctions

Credit Suisse Award for Best Teaching

EPFL

2018

Publications

2025

[1] Model order reduction of hæmodynamics by space–time reduced basis and reduced fluid–structure interaction

R. TenderiniS. Deparis

Computer Methods in Applied Mechanics and Engineering

2025

Vol. 447, p. 118347.

DOI : 10.1016/j.cma.2025.118347

[2] A spline-based hexahedral mesh generator for patient-specific coronary arteries

F. MarcinnòJ. HinzA. BuffaS. Deparis

Computer Methods in Applied Mechanics and Engineering

2025

Vol. 445, p. 118153.

DOI : 10.1016/j.cma.2025.118153

2024

[3] SPACE-TIME REDUCED BASIS METHODS FOR PARAMETRIZED UNSTEADY STOKES EQUATIONS

R. TenderiniN. MuellerS. Deparis

Siam Journal On Scientific Computing

2024

Vol. 46, num. 1, p. B1 - B32.

DOI : 10.1137/22M1509114

2023

[4] DeepBND: A machine learning approach to enhance multiscale solid mechanics

F. RochaS. DeparisP. AntolinA. Buffa

Journal of Computational Physics

2023

Vol. 479, p. 111996.

DOI : 10.1016/j.jcp.2023.111996

2022

[5] The INTERNODES method for applications in contact mechanics and dedicated preconditioning techniques

Y. VoetG. AnciauxS. DeparisP. Gervasio

Computers & Mathematics With Applications

2022

Vol. 127, p. 48 - 64.

DOI : 10.1016/j.camwa.2022.09.019

[6] PDE-Aware Deep Learning for Inverse Problems in Cardiac Electrophysiology

R. TenderiniS. PaganiA. QuarteroniS. Deparis

SIAM Journal on Scientific Computing

2022

Vol. 44, num. 3, p. B605 - B639.

DOI : 10.1137/21M1438529

[7] Gender, prior knowledge, and the impact of a flipped linear algebra course for engineers over multiple years

C. HardebolleH. VermaR. TormeyS. Deparis

Journal of Engineering Education

2022

p. 1 - 21.

DOI : 10.1002/jee.20467

[8] Conservation of Forces and Total Work at the Interface Using the Internodes Method

S. DeparisP. Gervasio

Vietnam Journal of Mathematics

2022

DOI : 10.1007/s10013-022-00560-9

2021

[9] Deep Neural Network to Accurately Predict Left Ventricular Systolic Function Under Mechanical Assistance

J. BonnemainM. ZellerL. PegolottiS. DeparisL. Liaudet

Frontiers In Cardiovascular Medicine

2021

Vol. 8, p. 752088.

DOI : 10.3389/fcvm.2021.752088

[10] Model order reduction of flow based on a modular geometrical approximation of blood vessels

L. PegolottiM. R. PfallerA. L. MarsdenS. Deparis

Computer Methods in Applied Mechanics and Engineering

2021

Vol. 380, p. 113762.

DOI : 10.1016/j.cma.2021.113762

2020

[11] Implementation and Calibration of a Deep Neural Network to Predict Parameters of Left Ventricular Systolic Function Based on Pulmonary and Systemic Arterial Pressure Signals

J. BonnemainL. PegolottiL. LiaudetS. Deparis

Frontiers In Physiology

2020

Vol. 11, p. 1086.

DOI : 10.3389/fphys.2020.01086

[12] Data driven approximation of parametrized PDEs by reduced basis and neural networks

N. Dal SantoS. DeparisL. Pegolotti

Journal Of Computational Physics

2020

Vol. 416, p. 109550.

DOI : 10.1016/j.jcp.2020.109550

[13] Analysis of morphological and haemodynamical indexes in abdominal aortic aneurysms as preliminary indicators of intraluminal thrombus deposition

C. M. ColciagoS. DeparisM. DomaninC. RiccobeneE. Schenone  et al.

Biomechanics and Modeling in Mechanobiology

2020

Vol. 19, num. 3, p. 1035 - 1053.

DOI : 10.1007/s10237-019-01269-4

2019

[14] Coupling non-conforming discretizations of PDEs by spectral approximation of the Lagrange multiplier space

S. DeparisA. IubattiL. Pegolotti

ESAIM: Mathematical Modelling and Numerical Analysis

2019

Vol. 53, num. 5, p. 1667 - 1694.

DOI : 10.1051/m2an/2019030

2018

[15] Application of the Rosenbrock methods to the solution of unsteady 3D incompressible Navier-Stokes equations

S. DeparisM. O. DevilleF. MenghiniL. PegolottiA. Quarteroni

Computers & Fluids

2018

Vol. 179, p. 112 - 122.

DOI : 10.1016/j.compfluid.2018.10.005

[16] Reduced Numerical Approximation of Reduced Fluid-Structure Interaction Problems With Applications in Hemodynamics

C. M. ColciagoS. Deparis

Frontiers in Applied Mathematics and Statistics

2018

Vol. 4, p. 18.

DOI : 10.3389/fams.2018.00018

[17] Multi space reduced basis preconditioners for large-scale parametrized PDEs

N. Dal SantoS. DeparisA. ManzoniA. Quarteroni

SIAM Journal on Scientific Computing

2018

Vol. 40, num. 2, p. A954 - A983.

DOI : 10.1137/16M1089149

[18] The LifeV library: engineering mathematics beyond the proof of concept

L. BertagnaS. DeparisL. FormaggiaD. FortiA. Veneziani

ArXiv

2018

Vol. [math.NA], p. 1710.06596.

2017

[19] A parallel algorithm for the solution of large-scale nonconforming fluid-structure interaction problems in hemodynamics

D. FortiA. QuarteroniS. Deparis

Journal of Computational Mathematics -International Edition-

2017

Vol. 35, num. 3, p. 363 - 380.

DOI : 10.4208/jcm.1702-m2016-0630

[20] A Monolithic Approach to Fluid–Composite Structure Interaction

D. FortiM. BukacA. QuainiS. CanicS. Deparis

Journal of Scientific Computing

2017

Vol. 72, p. 396 - 421.

DOI : 10.1007/s10915-017-0363-5

Enseignement et PhD

Cours déjà enseignés

Algèbre linéaire, Analyse 1, Analyse numérique, Programmation pour le calcul scientifique, Analyse et mathématiques numériques, Approximation numérique des équations au dérivés partielles.

Doctorant·es actuel·les

Micol Bassanini, Fabio Marcinno, Manuela Pineros-Rodriguez, Francesco Sala

A dirigé les thèses EPFL de

Luca Pegolotti, Riccardo Tenderini

Paolo Crosetto, Adelmo Cristiano Innocenza Malossi, Gwenol Grandperrin, Radu Popescu, Claudia Maria Colciago, Davide Forti

Cours

Algèbre linéaire (classe inversée)

MATH-111(pi)

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications. Cette classe est donné sous forme inversée.

Teaching STEM: a problem solving approach

ENG-644

Problem solving is a core engineering skill. This course explores relevant heuristics, epistemologies, metacognitive skills and evidence-informed teaching strategies for developing problem solving skills that transfer from paper-based exercises to complex, real world engineering situations.