Fields of expertise
Analysis and modeling of nonlinear phenomena occurring in mathematical physics. Hyperbolic partial differential equations. Finite element method.
Education
PhD
Mathematics
EPFL
2015-2020
MAS / Diplôme d'enseignement pour le degré secondaire 2
Pedagogy
HEP Vaud
2019-2020
Master of Science
Mathematics
University of Turin
2011-2014
Bachelor of Science
Mathematics
University of Turin
2009-2011
Publications
Infoscience publications
2017
Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on $\R^{3+1}$
S. F. Burzio; J. Krieger
Memoirs of the AMS. 2022. DOI : 10.1090/memo/1369.On long time behavior of solutions to nonlinear dispersive equations
S. F. Burzio
Lausanne, EPFL, 2020. DOI : 10.5075/epfl-thesis-10002. Stability of slow blow-up solutions for the critical focussing nonlinear wave equation on $\mathbb{R}^{3+1}$
S. F. Burzio
2020. Conference on Mathematics of Wave Phenomena 2018, Karlsruhe, Germany, July 23-28, 2018. p. 69–88. DOI : 10.1007/978-3-030-47174-3_5.
Teaching & PhD
Courses
(Coursebook not yet approved by the section)
(Coursebook not yet approved by the section)
(Coursebook not yet approved by the section)