Tudor Ratiu

EPFL SB-DO
MA A1 345 (Bâtiment MA)
Station 8
1015 Lausanne

Expertise

geometric mechanics, continuum mechanics, hydrodynamics, symplectic, Poisson, and Dirac geometry, integrable systems, stability, global analysis, Lie theory (finite and infinite dimensional), geometric integration

Expertise

geometric mechanics, continuum mechanics, hydrodynamics, symplectic, Poisson, and Dirac geometry, integrable systems, stability, global analysis, Lie theory (finite and infinite dimensional), geometric integration
Citoyen des Etats-Unis, Tudor Ratiu est né en 1950 à Timisoara, Roumanie. Il a obtenu un diplôme en mathématiques en 1973 ainsi qu'un diplôme de maîtrise en mathématiques appliquées en 1974 à l'Université de Timisoara. Pour des raisons politiques il lui est interdit de poursuivre ses études et en 1975 il est obligé de quitter son pays. En 1980 il obtient un doctorat à l'Université de Californie à Berkeley avec une thèse en mécanique géométrique et est nommé professeur assistant de recherche T.H. Hildebrandt à l'Université de Michigan, Ann Arbor.
En 1983 il rejoint l'Université d'Arizona, Tucson, comme professeur associé et en 1987 l'Université de Californie, Santa Cruz, ou il est nommé professeur ordinaire en 1988. Il lui a été décerné une bourse postdoctorale du Fonds national scientifique américain, une bourse de la fondation A.P. Sloan, la chaire de recherche professoriale Miller à Berkeley, une bourse Fulbright et le prix allemand A. von Humboldt. Il a été professeur et chercheur invité dans plusieurs départements et instituts de recherche mathématiques du monde.
Les thèmes principaux de sa recherche sont l'analyse globale, la mécanique des fluides et du plasma, la dynamique hamiltonienne, la mécanique géométrique, la géométrie symplectique et de Poisson, la théorie de bifurcations et l'étude des systèmes complètement intégrables. Ses travaux concernent l'aspect mathématique de ces problèmes ainsi que leurs applications en physique et les sciences d'ingénieur. Il est auteur, en collaboration, de plusieurs livres de spécialité.
En 1997 il est nommé professeur ordinaire en analyse au Département de mathématiques et entre en fonction en juillet 1998.

Area preserving flows and metriplectic dynamics on an annulus

O. EsenP. GuhaT. S. Ratiu

Geometric Mechanics. 2025. DOI : 10.1142/s2972458925500066.

Cotangent Bundle Reduction

J. P. OrtegaT. S. Ratiu

Encyclopedia of Mathematical Physics; Elsevier, 2024. p. 415 - 423.

Simultaneous local normal forms of dynamical systems with singular underlying geometric structures

K. JiangT. S. RatiuNguyen Tien Zung

NONLINEARITY. 2024. DOI : 10.1088/1361-6544/ad700d.

The Restricted Siegel Disc as Coadjoint Orbit

F. Gay-BalmazT. S. RatiuA. B. Tumpach

2024. 40TH WORKSHOP ON GEOMETRIC METHODS IN PHYSICS (WGMP), Bialowieza, POLAND, 2023-07-02 - 2023-07-08. p. 59 - 79. DOI : 10.1007/978-3-031-62407-0_6.

Stochastic Variational Principles for Dissipative Equations with Advected Quantities

X. ChenA. B. CruzeiroT. S. Ratiu

Journal Of Nonlinear Science. 2023. DOI : 10.1007/s00332-022-09846-1.

Symplectic induction, prequantum induction, and prequantum multiplicities

T. S. RatiuF. Ziegler

Communications In Contemporary Mathematics. 2022. DOI : 10.1142/S0219199721500577.

Wigner Measures and Coherent Quantum Control

J. E. GoughT. S. RatiuO. G. Smolyanov

Proceedings Of The Steklov Institute Of Mathematics. 2021. DOI : 10.1134/S0081543821020061.

On the Eringen model for nematic liquid crystals

G. A. ChechkinT. S. RatiuM. S. Romanov

Comptes Rendus Mecanique. 2021. DOI : 10.5802/crmeca.67.

Geodesic flows on real forms of complex semi-simple Lie groups of rigid body type

T. S. RatiuD. Tarama

Research In The Mathematical Sciences. 2020. DOI : 10.1007/s40687-020-00227-2.

Quantum Anomalies via Differential Properties of Lebesgue-Feynman Generalized Measures

J. E. GoughT. S. RatiuO. G. Smolyanov

Proceedings Of The Steklov Institute Of Mathematics. 2020. DOI : 10.1134/S0081543820050077.

Presymplectic convexity and (ir)rational polytopes

T. RatiuNguyen Tien Zung

Journal of Symplectic Geometry. 2019. DOI : 10.4310/JSG.2019.v17.n5.a8.

The Clebsch Representation in Optimal Control and Low Rank Integrable Systems

A. M. BlochF. Gay-BalmazT. S. Ratiu

2018. Abel Symposium on Computation and Combinatorics in Dynamics, Stochastics and Control, Rosendal, NORWAY, 2016-08-16 - 2016-08-19. p. 129 - 158. DOI : 10.1007/978-3-030-01593-0_5.

Integrable Systems of Neumann Type (vol 27, pg 533, 2015)

A. DobrogowskaT. S. Ratiu

Journal Of Dynamics And Differential Equations. 2017. DOI : 10.1007/s10884-016-9540-8.

Existence and uniqueness theorems for the full three-dimensional Ericksen-Leslie system

G. A. ChechkinT. S. RatiuM. S. RomanovV. N. Samokhin

Mathematical Models & Methods In Applied Sciences. 2017. DOI : 10.1142/S0218202517500178.

The Geometric Nature of the Flaschka Transformation

A. M. BlochF. Gay-BalmazT. S. Ratiu

Communications In Mathematical Physics. 2017. DOI : 10.1007/s00220-017-2854-5.

Noether Theorems and Quantum Anomalies

J. GoughT. S. RatiuO. G. Smolyanov

Doklady Mathematics. 2017. DOI : 10.1134/S1064562417010112.

The tropical momentum map: a classification of toric log symplectic manifolds

M. GualtieriS. LiA. PelayoT. S. Ratiu

Mathematische Annalen. 2017. DOI : 10.1007/s00208-016-1427-9.

A multisymplectic integrator for elastodynamic frictionless impact problems

F. DemouresF. Gay-BalmazM. DesbrunT. S. RatiuA. M. Aragon

Computer Methods In Applied Mechanics And Engineering. 2017. DOI : 10.1016/j.cma.2016.11.011.

On unique solvability of the full three-dimensional Ericksen-Leslie system

G. A. ChechkinT. S. RatiuM. S. RomanovV. N. Samokhin

Comptes Rendus Mecanique. 2016. DOI : 10.1016/j.crme.2016.02.010.

Multisymplectic variational integrators and space/time symplecticity

F. DemouresF. Gay-BalmazT. S. Ratiu

Analysis And Applications. 2016. DOI : 10.1142/S0219530515500025.

Generalized Virasoro algebra: left-symmetry and related algebraic and hydrodynamic properties

M. N. HounkonnouP. GuhaT. Ratiu

Journal Of Nonlinear Mathematical Physics. 2016. DOI : 10.1080/14029251.2016.1135642.

Existence and Uniqueness Theorems for the Two-Dimensional Ericksen-Leslie System

G. A. ChechkinT. S. RatiuM. S. RomanovV. N. Samokhin

Journal Of Mathematical Fluid Mechanics. 2016. DOI : 10.1007/s00021-016-0250-0.

Multisymplectic Variational Integrators For Nonsmooth Lagrangian Continuum Mechanics

F. DemouresF. Gay-BalmazT. S. Ratiu

Forum Of Mathematics Sigma. 2016. DOI : 10.1017/fms.2016.17.

Bi-Jacobi Fields And Riemannian Cubics For Left-Invariant SO(3)

L. NoakesT. S. Ratiu

Communications In Mathematical Sciences. 2016. DOI : 10.4310/CMS.2016.v14.n1.a3.

Nematodynamics and random homogenization

G. A. ChechkinT. P. ChechkinaT. S. RatiuM. S. Romanov

Applicable Analysis. 2016. DOI : 10.1080/00036811.2015.1036241.

Algebraic Complete Integrability of the Bloch-Iserles System

V. BrinzanescuT. S. Ratiu

International Mathematics Research Notices. 2015. DOI : 10.1093/imrn/rnu111.

L-2-cohomology and complete Hamiltonian manifolds

R. MazzeoA. PelayoT. S. Ratiu

Journal Of Geometry And Physics. 2015. DOI : 10.1016/j.geomphys.2014.07.012.

Geometry of non-holonomic diffusion

S. HochgernerT. S. Ratiu

Journal Of The European Mathematical Society. 2015. DOI : 10.4171/Jems/504.

Integrable Systems of Neumann Type

A. DobrogowskaT. S. Ratiu

Journal Of Dynamics And Differential Equations. 2015. DOI : 10.1007/s10884-013-9314-5.

Discrete variational Lie group formulation of geometrically exact beams dynamics

F. M. A. DemouresF. Gay-BalmazS. LeyendeckerS. Ober-BlöbaumT. Ratiu  et al.

Numerische Mathematik. 2015. DOI : 10.1007/s00211-014-0659-4.

Fiber connectivity and bifurcation diagrams of almost toric integrable systems

A. PelayoT. S. RatiuS. V. Ngoc

Journal Of Symplectic Geometry. 2015.

Quantum anomalies and logarithmic derivatives of feynman pseudomeasures

J. GoughT. S. RatiuO. G. Smolyanov

Doklady Mathematics. 2015. DOI : 10.1134/S1064562415060356.

Existence and Uniqueness Theorems in Two-Dimensional Nematodynamics. Finite Speed of Propagation

T. S. RatiuM. S. RomanovV. N. SamokhinG. A. Chechkin

Doklady Mathematics. 2015. DOI : 10.1134/S106456241503028X.

Noether's theorem for dissipative quantum dynamical semi-groups

J. E. GoughT. S. RatiuO. G. Smolyanov

Journal Of Mathematical Physics. 2015. DOI : 10.1063/1.4907985.

Dynamics of particles with anisotropic mass depending on time and position

T. S. RatiuO. G. Smolyanov

Doklady Mathematics. 2015. DOI : 10.1134/S1064562415060241.

The U (n) free rigid body: Integrability and stability analysis of the equilibria

T. S. RatiuD. Tarama

Journal Of Differential Equations. 2015. DOI : 10.1016/j.jde.2015.08.021.

Lagrangian Reductions and Integrable Systems in Condensed Matter

F. Gay-BalmazM. MonastyrskyT. S. Ratiu

Communications In Mathematical Physics. 2015. DOI : 10.1007/s00220-015-2317-9.

The geometry of the universal Teichmuller space and the Euler-Weil-Petersson equation

F. Gay-BalmazT. S. Ratiu

Advances In Mathematics. 2015. DOI : 10.1016/j.aim.2015.04.005.

Wigner Quantization of Hamilton-Dirac Systems

T. S. RatiuO. G. Smolyanov

Doklady Mathematics. 2015. DOI : 10.1134/S1064562415010287.

Wigner measures and quantum control

J. GoughT. S. RatiuO. G. Smolyanov

Doklady Mathematics. 2015. DOI : 10.1134/S1064562415020271.

Hamiltonian Structures in the Quantum Theory of Hamilton-Dirac Systems

T. S. RatiuO. G. Smolyanov

Doklady Mathematics. 2015. DOI : 10.1134/S1064562415010214.

Multisymplectic Lie group variational integrator for a geometrically exact beam in R3

F. DemouresF. Gay-BalmazM. KobilarovT. S. Ratiu

Communications in Nonlinear Science and Numerical Simulation. 2014. DOI : 10.1016/j.cnsns.2014.02.032.

Moduli spaces of toric manifolds

A. PelayoA. R. PiresT. S. RatiuS. Sabatini

Geometriae Dedicata. 2014. DOI : 10.1007/s10711-013-9858-x.

Feynman, Wigner, and Hamiltonian structures describing the dynamics of open quantum systems

J. GoughT. S. RatiuO. G. Smolyanov

Doklady Mathematics. 2014. DOI : 10.1134/S1064562414010190.

Integrable G-strands on semisimple Lie groups

F. Gay-BalmazD. D. HolmT. S. Ratiu

Journal Of Physics A-Mathematical And Theoretical. 2014. DOI : 10.1088/1751-8113/47/7/075201.

Nonexistence of smooth solutions for a full viscous isentropic liquid crystal system in three dimensions

T. S. RatiuO. Rozanova

Physica D-Nonlinear Phenomena. 2014. DOI : 10.1016/j.physd.2014.02.009.

Equivalent Theories of Liquid Crystal Dynamics

F. Gay-BalmazT. S. RatiuC. Tronci

Archive For Rational Mechanics And Analysis. 2013. DOI : 10.1007/s00205-013-0673-1.

Spectral series of the Schrodinger operator with delta-potential on a three-dimensional spherically symmetric manifold

T. S. RatiuA. A. SuleimanovaA. I. Shafarevich

Russian Journal Of Mathematical Physics. 2013. DOI : 10.1134/S1061920813030072.

Extensions of Lie-Rinehart algebras and cotangent bundle reduction

J. HuebschmannM. PerlmutterT. S. Ratiu

Proceedings Of The London Mathematical Society. 2013. DOI : 10.1112/plms/pdt030.

Dirac Optimal Reduction

M. M. JotzT. S. Ratiu

International Mathematics Research Notices. 2013. DOI : 10.1093/imrn/rnr239.

On the coupling between an ideal fluid and immersed particles

H. O. JacobsT. S. RatiuM. Desbrun

Physica D-Nonlinear Phenomena. 2013. DOI : 10.1016/j.physd.2013.09.004.

Hamiltonian and Feynman Aspects of Secondary Quantization

T. S. RatiuO. G. Smolyanov

Doklady Mathematics. 2013. DOI : 10.1134/S1064562413030174.

Dirac Structures, Nonholonomic Systems And Reduction

M. JotzT. S. Ratiu

Reports On Mathematical Physics. 2012. DOI : 10.1016/S0034-4877(12)60016-0.

Lie group and Lie algebra variational integrators for flexible beam and plate in R3

Y. WeinandT. Ratiu

2012

Noncompact Lagrangian manifolds corresponding to the spectral series of the Schrodinger operator with delta-potential on a surface of revolution

T. RatiuT. A. FilatovaA. I. Shafarevich

Doklady Mathematics. 2012. DOI : 10.1134/S1064562412050365.

Lie Group and Lie Algebra Variational Integrators for Flexible Beam and Plate in R3

F. M. A. Demoures / Y. WeinandT. S. Ratiu (Dir.)

Lausanne, EPFL, 2012. DOI : 10.5075/epfl-thesis-5556.

Euler-Poincare Approaches to Nematodynamics

F. Gay-BalmazT. S. RatiuC. Tronci

Acta Applicandae Mathematicae. 2012. DOI : 10.1007/s10440-012-9719-x.

Exact geometric theory of dendronized polymer dynamics

F. Gay-BalmazD. D. HolmV. PutkaradzeT. S. Ratiu

Advances In Applied Mathematics. 2012. DOI : 10.1016/j.aam.2011.11.006.

Invariant Higher-Order Variational Problems II

F. Gay-BalmazD. D. HolmD. M. MeierT. S. RatiuF.-X. Vialard

Journal Of Nonlinear Science. 2012. DOI : 10.1007/s00332-012-9137-2.

Invariant frames for vector bundles and applications

M. JotzT. S. RatiuM. Zambon

Geometriae Dedicata. 2012. DOI : 10.1007/s10711-011-9618-8.

Invariant Higher-Order Variational Problems

F. Gay-BalmazD. D. HolmD. M. MeierT. S. RatiuF.-X. Vialard

Communications in Mathematical Physics. 2012. DOI : 10.1007/s00220-011-1313-y.

Bifurcation diagram for the Kovalevskaya case on the lie algebra so(4)

I. K. KozlovT. S. Ratiu

Doklady Mathematics. 2012. DOI : 10.1134/S106456241206004X.

Reduced Variational Formulations in Free Boundary Continuum Mechanics

F. Gay-BalmazJ. E. MarsdenT. S. Ratiu

Journal Of Nonlinear Science. 2012. DOI : 10.1007/s00332-012-9143-4.

Stability of Equilibria for the so(4) Free Rigid Body

P. BirteaI. CasuT. S. RatiuM. Turhan

Journal Of Nonlinear Science. 2012. DOI : 10.1007/s00332-011-9113-2.

Higher order Lagrange-Poincar, and Hamilton-Poincar, reductions

F. Gay-BalmazD. D. HolmT. S. Ratiu

Bulletin Of The Brazilian Mathematical Society. 2011. DOI : 10.1007/s00574-011-0030-7.

Dirac Group(oid)s and Their Homogeneous Spaces

M. Jotz / T. S. Ratiu (Dir.)

Lausanne, EPFL, 2011. DOI : 10.5075/epfl-thesis-5064.

The Momentum Map Representation of Images

M. BruverisF. Gay-BalmazD. D. HolmT. S. Ratiu

Journal Of Nonlinear Science. 2011. DOI : 10.1007/s00332-010-9079-5.

Geometry of nonabelian charged fluids

F. Gay-BalmazT. S. Ratiu

Dynamics Of Partial Differential Equations. 2011. DOI : 10.4310/DPDE.2011.v8.n1.a2.

Asynchronous variational integrators as a mechanical tool for dimensioning thin-shell structures

Y. WeinandT. Ratiu

2011

Induced Dirac structures on isotropy-type manifolds

M. JotzT. S. Ratiu

Transformation Groups. 2011. DOI : 10.1007/s00031-011-9123-z.

Flexible beam in R3 under large overall motions and Asynchronous Variational Integrators

F. DemouresF. Gay-BalmazJ. NembriniT. RatiuY. Weinand

2011. IABSE-IASS Symposium 2011, London, Great-Britain, September 20-23, 2011.

Singular Reduction Of Dirac Structures

M. JotzT. S. RatiuJ. Sniatycki

Transactions Of The American Mathematical Society. 2011. DOI : 10.1090/S0002-9947-2011-05220-7.

Clebsch Optimal Control Formulation In Mechanics

F. Gay-BalmazT. S. Ratiu

Journal Of Geometric Mechanics. 2011. DOI : 10.3934/jgm.2011.3.41.

Invariant generators for generalized distributions

M. JotzT. S. Ratiu

Differential Geometry And Its Applications. 2011. DOI : 10.1016/j.difgeo.2011.08.010.

Lagrange-Poincare field equations

D. C. P. EllisF. Gay-BalmazD. D. HolmT. S. Ratiu

Journal Of Geometry And Physics. 2011. DOI : 10.1016/j.geomphys.2011.06.007.

Obituary: Jerry Marsden

T. S. Ratiu

Dynamics Of Partial Differential Equations. 2011. DOI : 10.4310/DPDE.2011.v8.n1.a1.

Introduction to Geometric Mechanics and AVI

F. DemouresT. RatiuY. Weinand

Presentation at the Aeronautics & Astronautics Laboratory, MIT, Boston, Massachusetts, USA, May 13, 2010.

Remembering Jerry Marsden IN MEMORIAM

T. Ratiu

Regular & Chaotic Dynamics. 2010. DOI : 10.1134/S1560354710060018.

AVI as a Mechanical Tool for Studying Dynamic and Static Euler-Bernoulli Beam Structures

F. DemouresJ. NembriniT. S. RatiuY. Weinand

2010. 1st EPFL Doctoral Conference in Mechanics, Advances in Modern Aspects of Mechanics, Lausanne, February 19, 2010. p. 69 - 72.

A New Lagrangian Dynamic Reduction In Field Theory

F. Gay-BalmazT. S. Ratiu

Annales De L Institut Fourier. 2010. DOI : 10.5802/aif.2549.

Symmetry Reduced Dynamics of Charged Molecular Strands

D. C. P. EllisF. Gay-BalmazD. D. HolmV. PutkaradzeT. S. Ratiu

Archive For Rational Mechanics And Analysis. 2010. DOI : 10.1007/s00205-010-0305-y.

AVI as a mechanical tool for studying thin-shells based on Kirchhoff-Love constraints

F. DemouresJ. NembriniT. RatiuY. Weinand

6th Annual Structured Integrators Workshop, University of California, San Diego, USA, April 26-27, 2010.

Variational Principles For Spin Systems And The Kirchhoff Rod

F. Gay-BalmazD. D. HolmT. S. Ratiu

Journal Of Geometric Mechanics. 2009. DOI : 10.3934/jgm.2009.1.417.

A Class of Integrable Flows on the Space of Symmetric Matrices

A. M. BlochV. BrinzanescuA. IserlesJ. E. MarsdenT. S. Ratiu

Communications In Mathematical Physics. 2009. DOI : 10.1007/s00220-009-0849-6.

The Momentum Map In Poisson Geometry

R. L. FernandesJ.-P. OrtegaT. S. Ratiu

American Journal Of Mathematics. 2009. DOI : 10.1353/ajm.0.0068.

Openness And Convexity For Momentum Maps

P. BirteaJ.-P. OrtegaT. S. Ratiu

Transactions Of The American Mathematical Society. 2009. DOI : 10.1090/S0002-9947-08-04689-8.

The geometric structure of complex fluids

F. Gay-BalmazT. S. Ratiu

Advances In Applied Mathematics. 2009. DOI : 10.1016/j.aam.2008.06.002.

Poisson Reduction by Distributions

M. JotzT. S. Ratiu

Letters In Mathematical Physics. 2009. DOI : 10.1007/s11005-009-0295-6.

Infinite dimensional geodesic flows and the universal Teichmüller space

F. Gay-Balmaz / T. S. Ratiu (Dir.)

Lausanne, EPFL, 2009. DOI : 10.5075/epfl-thesis-4254.

Perspectives in fluid dynamics - Introduction

T. RatiuG. Raugel

Physica D-Nonlinear Phenomena. 2008. DOI : 10.1016/j.physd.2008.04.003.

Poisson reduction and the Hamiltonian structure of the Euler-Yang-Mills equations

F. Gay-BalmazT. S. Ratiu

2008. 5th International Conference on Poisson Geomentry in Mathematics and Physics, Tokyo, JAPAN, Jun 05-09, 2006. p. 113 - 126.

Reduced Lagrangian and Hamiltonian formulations of Euler-Yang-Mills fluids

F. Gay-BalmazT. S. Ratiu

Journal Of Symplectic Geometry. 2008.

Induction for weak symplectic Banach manifolds

A. OdzijewiczT. S. Ratiu

Journal of Geometry and Physics. 2008. DOI : 10.1016/j.geomphys.2008.01.003.

A local-to-global principle for convexity in metric spaces

P. BirteaJ.-P. OrtegaT. S. Ratiu

Journal of Lie Theory. 2008.

Induced and coinduced Banach Lie-Poisson spaces and integrability

A. OdzijewiczT. S. Ratiu

Journal Of Functional Analysis. 2008. DOI : 10.1016/j.jfa.2008.06.001.

Affine Lie-Poisson reduction, Yang-Mills magnetohydrodynamics, and superfluids

F. Gay-BalmazT. S. Ratiu

2008. Meeting held in Honor of Darryl D Holms on Geometry and Analysis in Physical Systems, Lausanne, SWITZERLAND, Jul 22-28, 2007. DOI : 10.1088/1751-8113/41/34/344007.

Singular cosphere bundle reduction

O. M. DraguleteT. S. RatiuM. Rodríguez-Olmos

Transactions of the American Mathematical Society. 2007. DOI : 10.1090/S0002-9947-07-04229-8.

The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits

D. BeltiţăT. S. RatiuA. B. Tumpach

Journal of Functional Analysis. 2007. DOI : 10.1016/j.jfa.2007.03.001.

Group actions on chains of Banach manifolds and applications to fluid dynamics

F. Gay-BalmazT. S. Ratiu

Annals of Global Analysis and Geometry. 2007. DOI : 10.1007/s10455-007-9061-0.

Geometric representation theory for unitary groups of operator algebras

D. BeltiţăT. S. Ratiu

Advances in Mathematics. 2007. DOI : 10.1016/j.aim.2006.02.009.

Hamiltonian reduction by stages

J. E. MarsdenG. MisiolekJ.-P. OrtegaM. PerlmutterT. S. Ratiu

Springer, 2007.

Some applications of symmetries in differential geometry and dynamical systems

O. M. Dragulete / T. S. Ratiu (Dir.)

Lausanne, EPFL, 2007. DOI : 10.5075/epfl-thesis-3937.

The stratified spaces of a symplectic Lie group action

J.-P. OrtegaT. S. Ratiu

Rep. Math. Phys.. 2006. DOI : 10.1016/S0034-4877(06)80040-6.

Cotangent Bundle Reduction

J. P. OrtegaT. S. Ratiu

Encyclopedia of Mathematical Physics; Elsevier, 2006. p. 658 - 667.

The reduced spaces of a symplectic Lie group action

J.-P. OrtegaT. S. Ratiu

Annals of Global Analysis and Geometry. 2006. DOI : 10.1007/s10455-006-9017-9.

Existence, uniqueness and regularity of solutions for a thermomechanical model of shape memory alloys

T. S. RatiuA. TimofteV. Timofte

Math. Mech. Solids. 2006. DOI : 10.1177/1081286505046477.

Symmetry and Symplectic Reduction

J. P. OrtegaT. S. Ratiu

Encyclopedia of Mathematical Physics: Five-Volume Set; Elsevier, 2006. p. 190 - 198.

On the symmetry breaking phenomenon

P. BirteaM. PutaT. S. RatiuR. M. Tudoran

International Journal of Geometric Methods in Modern Physics. 2006. DOI : 10.1142/S021988780600134X.

Poisson Reduction

J. P. OrtegaT. S. Ratiu

Encyclopedia of Mathematical Physics; Elsevier, 2006. p. 79 - 84.

The universal covering and covered spaces of a symplectic Lie algebra action

J.-P. OrtegaT. S. Ratiu

The breadth of symplectic and Poisson geometry; Birkhäuser Boston, 2005. p. 571 - 581.

Preface

J. E. MarsdenT. S. Ratiu

The breadth of symplectic and Poisson geometry; Birkhäuser Boston, 2005. p. ix - xxiii.

Asymptotic and Lyapunov stability of constrained and Poisson equilibria

J.-P. OrtegaV. Planas-BielsaT. S. Ratiu

Journal of Differential Equations. 2005. DOI : 10.1016/j.jde.2004.09.016.

Banach Lie-Poisson spaces

A. OdzijewiczT. S. Ratiu

Twenty years of Bialowieza: a mathematical anthology; World Sci. Publ., Hackensack, NJ, 2005. p. 113 - 127.

Symplectic leaves in real Banach Lie-Poisson spaces

T. S. RatiuD. Beltiţă

Geometric & Functional Analysis. 2005. DOI : 10.1007/s00039-005-0524-9.

Symmetry breaking for toral actions in simple mechanical systems

P. BirteaM. PutaT. S. RatiuR. M. Tudoran

Journal of Differential Equations. 2005. DOI : 10.1016/j.jde.2005.06.003.

The Lie-Poisson structure of the LAE-$\alpha$ equation

F. Gay-BalmazT. S. Ratiu

Dynamics of Partial Differential Equations. 2005. DOI : 10.4310/DPDE.2005.v2.n1.a2.

A crash course in geometric mechanics

T. S. RatiuR. M. TudoranL. SbanoE. Sousa DiasG. Terra

Geometric mechanics and symmetry; Cambridge Univ. Press, 2005. p. 23 - 156.

Controllability of Poisson systems

P. BirteaM. PutaT. S. Ratiu

SIAM Journal on Control and Optimization. 2004. DOI : 10.1137/S0363012902401251.

The relation between local and global dual pairs

J. MontaldiJ.-P. OrtegaT. S. Ratiu

Mathematical Research Letters. 2004. DOI : 10.4310/MRL.2004.v11.n3.a7.

Cocycles, compatibility, and Poisson brackets for complex fluids

H. CendraJ. E. MarsdenT. S. Ratiu

Advances in multifield theories for continua with substructure; Birkhäuser Boston, 2004. p. 51 - 73.

Relative equilibria near stable and unstable Hamiltonian relative equilibria

J.-P. OrtegaT. S. Ratiu

Proceedings of the Royal Society of London Ser. A Math. Phys. Eng. Sci.. 2004. DOI : 10.1098/rspa.2003.1213.

Extensions of Banach Lie-Poisson spaces

A. OdzijewiczT. S. Ratiu

Journal of Functional Analysis. 2004. DOI : 10.1016/j.jfa.2004.02.012.

Symmetry reduction in symplectic and Poisson geometry

J.-P. OrtegaT. S. Ratiu

Letters in Mathematical Physics. 2004. DOI : 10.1007/s11005-004-0898-x.

Momentum maps and Hamiltonian reduction

J.-P. OrtegaT. S. Ratiu

Boston: Birkhäuser, 2004.

Singular reduction of implicit Hamiltonian systems

G. BlankensteinT. S. Ratiu

Rep. Math. Phys.. 2004. DOI : 10.1016/S0034-4877(04)90013-4.

A fluid problem with Navier-slip boundary conditions

A. V. BusuiocT. S. Ratiu

Complementarity, duality and symmetry in nonlinear mechanics; Kluwer Acad. Publ., 2004. p. 241 - 254.

Some remarks on a certain class of axisymmetric fluids of differential type

A. V. BusuiocT. S. Ratiu

Phys. D. 2004. DOI : 10.1016/j.physd.2003.10.013.

Bifurcation of relative equilibria in mechanical systems with symmetry

P. ChossatD. LewisJ.-P. OrtegaT. S. Ratiu

Advances in Applied Mathematics. 2003. DOI : 10.1016/S0196-8858(02)00503-1.

The second grade fluid and averaged Euler equations with Navier-slip boundary conditions

A. V. BusuiocT. S. Ratiu

Nonlinearity. 2003. DOI : 10.1088/0951-7715/16/3/318.

Reduction in principal bundles: covariant Lagrange-Poincaré equations

M. Castrillón LópezT. S. Ratiu

Communications in Mathematical Physics. 2003. DOI : 10.1007/s00220-003-0797-5.

Banach Lie-Poisson spaces and reduction

A. OdzijewiczT. S. Ratiu

Communications in Mathematical Physics. 2003. DOI : 10.1007/s00220-003-0948-8.

Variational principles for Lie-Poisson and Hamilton-Poincaré equations

H. CendraJ. E. MarsdenS. PekarskyT. S. Ratiu

Moscow Mathematical Journal. 2003. DOI : 10.17323/1609-4514-2003-3-3-833-867.

Gauge invariance and variational trivial problems on the bundle of connections

M. Castrillón LópezJ. Muñoz MasquéT. S. Ratiu

Differential Geom. Appl.. 2003. DOI : 10.1016/S0926-2245(03)00016-0.

Cosphere bundle reduction in contact geometry

O. M. DraguleteL. OrneaT. S. Ratiu

Journal of Symplectic Geometry. 2003.

Correction to: "Hamiltonian Hopf bifurcation with symmetry" [Arch. Ration. Mech. Anal. bf 163 (2002), no. 1, 1--33; refcno 1905135]

P. ChossatJ.-P. OrtegaT. S. Ratiu

Archive for Rational Mechanics and Analysis. 2003. DOI : 10.1007/s00205-003-0244-y.

A symplectic slice theorem

J.-P. OrtegaT. S. Ratiu

Letters in Mathematical Physics. 2002. DOI : 10.1023/A:1014407427842.

A short proof of chaos in an atmospheric system

P. BirteaM. PutaT. S. RatiuR. M. Tudoran

Phys. Lett. A. 2002. DOI : 10.1016/S0375-9601(02)00828-9.

The Euler-Poincaré equations in geophysical fluid dynamics

D. D. HolmJ. E. MarsdenT. S. Ratiu

Large-scale atmosphere-ocean dynamics, Vol. II; Cambridge Univ. Press, 2002. p. 251 - 300.

The optimal momentum map

J.-P. OrtegaT. S. Ratiu

Geometry, mechanics, and dynamics; New York: Springer, 2002. p. 329 - 362.

Unstable manifolds of relative equilibria in Hamiltonian systems with dissipation

G. DerksT. S. Ratiu

Nonlinearity. 2002. DOI : 10.1088/0951-7715/15/3/301.

The symmetric representation of the rigid body equations and their discretization

A. M. BlochP. E. CrouchJ. E. MarsdenT. S. Ratiu

Nonlinearity. 2002. DOI : 10.1088/0951-7715/15/4/316.

Hamiltonian Hopf bifurcation with symmetry

P. ChossatJ.-P. OrtegaT. S. Ratiu

Archive for Rational Mechanics and Analysis. 2002. DOI : 10.1007/s002050200182.

Trivial Lagrangians on connections and invariance under automorphisms

M. Castrillón LópezJ. Muñoz MasquéT. S. Ratiu

Steps in differential geometry (Debrecen, 2000); Inst. Math. Inform., Debrecen, 2001. p. 77 - 83.

Geometric mechanics, Lagrangian reduction, and nonholonomic systems

H. CendraJ. E. MarsdenT. S. Ratiu

Mathematics unlimited - 2001 and beyond; Springer, 2001. p. 221 - 273.

Lagrangian reduction by stages

H. CendraJ. E. MarsdenT. S. Ratiu

2001.

Critical point theory and Hamiltonian dynamics around critical elements

J.-P. OrtegaT. S. Ratiu

Symmetry and perturbation theory (Cala Gonone, 2001); World Sci. Publ., River Edge, NJ, 2001. p. 151 - 158.

Euler-Poincaré reduction on principal bundles

M. Castrillón LópezP. L. García PérezT. S. Ratiu

Letters in Mathematical Physics. 2001. DOI : 10.1023/A:1013303320765.

Reduction in principal fiber bundles: covariant Euler-Poincaré equations

M. Castrillón LópezT. S. RatiuS. Shkoller

Proceedings of the American Mathematical Society. 2000. DOI : 10.1090/S0002-9939-99-05304-6.

The Euler equations on thin domains

J. E. MarsdenT. S. RatiuG. Raugel

International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999); World Sci. Publ., River Edge, NJ, 2000. p. 1198 - 1203.

Reduction theory and the Lagrange-Routh equations

J. E. MarsdenT. S. RatiuJ. Scheurle

Journal of Mathematical Physics. 2000. DOI : 10.1063/1.533317.

The geometry and analysis of the averaged Euler equations and a new diffeomorphism group

J. E. MarsdenT. S. RatiuS. Shkoller

Geom. Funct. Anal.. 2000. DOI : 10.1007/PL00001631.

Stability of Hamiltonian relative equilibria

J.-P. OrtegaT. S. Ratiu

Nonlinearity. 1999. DOI : 10.1088/0951-7715/12/3/315.

A Dirichlet criterion for the stability of periodic and relative periodic orbits in Hamiltonian systems

J.-P. OrtegaT. S. Ratiu

Journal of Geometry and Physics. 1999. DOI : 10.1016/S0393-0440(99)00025-X.

Introduction to mechanics and symmetry: A basic exposition of classical mechanical systems; 2nd edition

J. E. MarsdenT. S. Ratiu

New York: Springer-Verlag, 1999.

Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry

J.-P. OrtegaT. S. Ratiu

Journal of Geometry and Physics. 1999. DOI : 10.1016/S0393-0440(99)00024-8.

The Euler-Poincaré equations and semidirect products with applications to continuum theories

D. D. HolmJ. E. MarsdenT. S. Ratiu

Advances in Mathematics. 1998. DOI : 10.1006/aima.1998.1721.

Symplectic reduction for semidirect products and central extensions

J. E. MarsdenG. MisiolekM. PerlmutterT. S. Ratiu

Differential Geom. Appl.. 1998. DOI : 10.1016/S0926-2245(98)00021-7.

On the geometry of the Virasoro-Bott group

P. W. MichorT. S. Ratiu

Journal of Lie Theory. 1998.

Lagrangian reduction, the Euler-Poincaré equations, and semidirect products

H. CendraD. D. HolmJ. E. MarsdenT. S. Ratiu

Geometry of differential equations; Amer. Math. Soc., 1998. p. 1 - 25.

Singular reduction of Poisson manifolds

J.-P. OrtegaT. S. Ratiu

Letters in Mathematical Physics. 1998. DOI : 10.1023/A:1007581632544.

Attracting curves on families of stationary solutions in two-dimensional Navier-Stokes and reduced magnetohydrodynamics

G. DerksT. S. Ratiu

Proceedings of the Royal Society of London Ser. A Math. Phys. Eng. Sci.. 1998. DOI : 10.1098/rspa.1998.0214.

Compatibility of symplectic structures adapted to noncommutatively integrable systems

F. FassòT. S. Ratiu

Journal of Geometry and Physics. 1998. DOI : 10.1016/S0393-0440(97)00077-6.

Maximal tori of some symplectomorphism groups and applications to convexity

A. M. BlochM. O. El HadramiH. FlaschkaT. S. Ratiu

Deformation theory and symplectic geometry (Ascona, 1996); Kluwer Acad. Publ., 1997. p. 201 - 222.

Persistence and smoothness of critical relative elements in Hamiltonian systems with symmetry

J.-P. OrtegaT. S. Ratiu

C. R. Académie des Sciences de Paris Série I Math.. 1997. DOI : 10.1016/S0764-4442(97)88714-9.

A Morse-theoretic proof of Poisson Lie convexity

H. FlaschkaT. S. Ratiu

Integrable systems and foliations/Feuilletages et systèmes intégrables (Montpellier, 1995); Birkhäuser Boston, 1997. p. 49 - 71.

On a maximal torus in the volume-preserving diffeomorphism group of the finite cylinder

D. BaoT. S. Ratiu

Differential Geom. Appl.. 1997. DOI : 10.1016/S0926-2245(96)00040-X.

Hamiltonian reduction of diffeomorphism-invariant field theories

J. HoppeT. S. Ratiu

Classical and Quantum Gravity. 1997. DOI : 10.1088/0264-9381/14/2/003.

Rotating $n$-gon/$kn$-gon vortex configurations

D. LewisT. S. Ratiu

Journal of Nonlinear Science. 1996. DOI : 10.1007/BF02440160.

Polygonal vortex configurations

D. LewisT. S. Ratiu

New trends for Hamiltonian systems and celestial mechanics; River Edge, NJ: World Sci. Publ., 1996. p. 249 - 262.

The Toda PDE and the geometry of the diffeomorphism group of the annulus

A. M. BlochH. FlaschkaT. S. Ratiu

Mechanics day (Waterloo, ON, 1992); Amer. Math. Soc., 1996. p. 57 - 92.

The Euler-Poincaré equations and double bracket dissipation

A. M. BlochP. S. KrishnaprasadJ. E. MarsdenT. S. Ratiu

Communications in Mathematical Physics. 1996. DOI : 10.1007/BF02101622.

A convexity theorem for Poisson actions of compact Lie groups

H. FlaschkaT. S. Ratiu

Annales Scientifiques de l'École Normale Supérieure. Série 4. 1996. DOI : 10.24033/asens.1754.

Approximations with curves of relative equilibria in Hamiltonian systems with dissipation

G. DerksD. LewisT. S. Ratiu

Nonlinearity. 1995.

Equations d'Euler dans une coque sphérique mince

J. E. MarsdenT. S. RatiuG. Raugel

C. R. Académie des Sciences de Paris Série I Math.. 1995.

Introduction to mechanics and symmetry

J. E. MarsdenT. S. Ratiu

Springer-Verlag, 1994.

Dissipation induced instabilities

A. M. BlochP. S. KrishnaprasadJ. E. MarsdenT. S. Ratiu

Annales de l'Institut Henri Poincaré : Analyse Non Linéaire. 1994. DOI : 10.1016/S0294-1449(16)30196-2.

Sub-Riemannian optimal control problems

A. M. BlochP. E. CrouchT. S. Ratiu

Hamiltonian and gradient flows, algorithms and control; Amer. Math. Soc., 1994. p. 35 - 48.

On the geometrical origin and the solutions of a degenerate Monge-Ampère equation

D. BaoT. S. Ratiu

Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990); Amer. Math. Soc., 1993. p. 55 - 68.

On a nonlinear equation related to the geometry of the diffeomorphism group

D. BaoJ. LafontaineT. S. Ratiu

Pacific Journal Math.. 1993.

Smale's topological program in mechanics and convexity

T. S. Ratiu

1993. From Topology to Computation: Unity and Diversity in the Mathematical Sciences (Smalefest), Berkeley, 5-9 August 1990. p. 517 - 529. DOI : 10.1007/978-1-4612-2740-3_46.

A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus

A. M. BlochH. FlaschkaT. S. Ratiu

Inventiones Mathematicae. 1993. DOI : 10.1007/BF01244316.

A candidate maximal torus in infinite dimensions

D. BaoT. S. Ratiu

Mathematical aspects of classical field theory (Seattle, WA, 1991); Amer. Math. Soc., 1992. p. 117 - 123.

Completely integrable gradient flows

A. M. BlochR. W. BrockettT. S. Ratiu

Communications in Mathematical Physics. 1992. DOI : 10.1007/BF02099528.

The heavy top: a geometric treatment

D. LewisT. S. RatiuJ. C. SimoJ. E. Marsden

Nonlinearity. 1992.

Convexity and integrability

A. M. BlochT. S. Ratiu

Symplectic geometry and mathematical physics (Aix-en-Provence, 1990); Birkhäuser Boston, 1991. p. 48 - 79.

On the diameter of the symplectomorphism group of the ball

Y. EliashbergT. S. Ratiu

Symplectic geometry, groupoids, and integrable systems; Berkeley, CA: Springer, 1991. p. 169 - 172.

Symplectic connections and the linearisation of Hamiltonian systems

J. E. MarsdenT. S. RatiuG. Raugel

Proceedings of the Royal Society of Edinburgh Sect. A. 1991. DOI : 10.1017/S030821050002477X.

On the nonlinear convexity theorem of Kostant

J.-H. LuT. S. Ratiu

Journal of the American Mathematical Society. 1991. DOI : 10.1090/S0894-0347-1991-1086967-2.

An infinite-dimensional point of view on the Weil-Petersson metric

T. S. RatiuA. Todorov

Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989); Amer. Math. Soc., 1991. p. 467 - 476.

The diameter of the symplectomorphism group is infinite

Y. EliashbergT. S. Ratiu

Inventiones Mathematicae. 1991. DOI : 10.1007/BF01239516.

A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra

A. M. BlochH. FlaschkaT. S. Ratiu

Duke Mathematical Journal. 1990. DOI : 10.1215/S0012-7094-90-06103-4.

Reduction, symmetry, and phases in mechanics

J. E. MarsdenR. MontgomeryT. S. Ratiu

1990.

Normalizing connections and the energy-momentum method

D. LewisJ. E. MarsdenT. S. RatiuJ. C. Simo

Hamiltonian systems, transformation groups and spectral transform methods (Montreal, PQ, 1989); Univ. Montréal, 1990. p. 207 - 227.

Spectral equations for the long wave limit of the Toda lattice equations

A. M. BlochR. W. BrockettY. KodamaT. S. Ratiu

Hamiltonian systems, transformation groups and spectral transform methods (Montreal, PQ, 1989); Univ. Montréal, 1990. p. 97 - 102.

A new formulation of the generalized Toda lattice equations and their fixed point analysis via the momentum map

A. M. BlochR. W. BrockettT. S. Ratiu

Bulletin of the American Mathematical Society. 1990. DOI : 10.1090/S0273-0979-1990-15960-9.

Formal stability of two-dimensional self-gravitating rotating disks

A. MazerT. S. Ratiu

The connection between infinite-dimensional and finite-dimensional dynamical systems (Boulder, CO, 1987); Amer. Math. Soc., 1989. p. 233 - 258.

Cartan-Hannay-Berry phases and symmetry

J. E. MarsdenR. MontgomeryT. S. Ratiu

Dynamics and control of multibody systems (Brunswick, ME, 1988); Amer. Math. Soc., 1989. p. 279 - 295.

Hamiltonian formulation of adiabatic free boundary Euler flows

A. MazerT. S. Ratiu

Journal of Geometry and Physics. 1989. DOI : 10.1016/0393-0440(89)90017-X.

The three-point vortex problem: commutative and noncommutative integrability

M. AdamsT. S. Ratiu

Hamiltonian dynamical systems (Boulder, CO, 1987); Amer. Math. Soc., 1988. p. 245 - 257.

Manifolds, tensor analysis, and applications

R. AbrahamJ. E. MarsdenT. S. Ratiu

Springer-Verlag, 1988.

Stability and bifurcation of a rotating planar liquid drop

D. LewisJ. E. MarsdenT. S. Ratiu

Journal of Mathematical Physics. 1987. DOI : 10.1063/1.527740.

Nonlinear stability in fluids and plasmas

J. E. MarsdenT. S. Ratiu

Seminar on new results in nonlinear partial differential equations (Bonn, 1984); Vieweg, 1987. p. 101 - 134.

Soliton mathematics

A. C. NewellT. S. RatiuM. TaborY. B. Zeng

Presses de l'Université de Montréal, 1986.

The Hamiltonian structure of continuum mechanics in material, inverse material, spatial and convective representations

D. D. HolmJ. E. MarsdenT. S. Ratiu

Hamiltonian structure and Lyapunov stability for ideal continuum dynamics; Presses Univ. Montréal, 1986. p. 11 - 124.

A Lie group structure for pseudodifferential operators

M. AdamsT. S. RatiuR. Schmid

Mathematische Annalen. 1986. DOI : 10.1007/BF01472130.

A Lie group structure for Fourier integral operators

M. AdamsT. S. RatiuR. Schmid

Mathematische Annalen. 1986. DOI : 10.1007/BF01450921.

Nonlinear stability analysis of stratified fluid equilibria

H. D. I. AbarbanelD. D. HolmJ. E. MarsdenT. S. Ratiu

Philos. Trans. Roy. Soc. London Ser. A. 1986. DOI : 10.1098/rsta.1986.0078.

Reduction of Poisson manifolds

J. E. MarsdenT. S. Ratiu

Letters in Mathematical Physics. 1986. DOI : 10.1007/BF00398428.

Nonlinear stability of the Kelvin-Stuart cat's eyes flow

D. D. HolmJ. E. MarsdenT. S. Ratiu

Nonlinear systems of partial differential equations in applied mathematics; Amer. Math. Soc., 1986. p. 171 - 186.

Formal stability of liquid drops with surface tension

D. LewisJ. E. MarsdenT. S. Ratiu

Perspectives in nonlinear dynamics (Silver Spring, Md., 1985); World Sci. Publishing, 1986. p. 71 - 83.

The Hamiltonian structure for dynamic free boundary problems

D. LewisJ. E. MarsdenR. MontgomeryT. S. Ratiu

Phys. D. 1986. DOI : 10.1016/0167-2789(86)90207-1.

Haretu's contribution to the $N$-body problem

T. S. Ratiu

Libertas Mathematica. 1985.

The Lie group structure of diffeomorphism groups and invertible Fourier integral operators, with applications

M. AdamsT. S. RatiuR. Schmid

1985. Conference on Infinite-dimensional Groups, Berkeley, California, May 10-May 15, 1984. p. 1 - 69. DOI : 10.1007/978-1-4612-1104-4_1.

Nonlinear stability of fluid and plasma equilibria

D. D. HolmJ. E. MarsdenT. S. RatiuA. Weinstein

Physics Reports. 1985. DOI : 10.1016/0370-1573(85)90028-6.

Reduction and Hamiltonian structures on duals of semidirect product Lie algebras

J. E. MarsdenT. S. RatiuA. Weinstein

Fluids and plasmas: geometry and dynamics (Boulder, Colo., 1983); Amer. Math. Soc., 1984. p. 55 - 100.

The group of Fourier integral operators as symmetry group

R. SchmidM. AdamsT. S. Ratiu

XIIIth international colloquium on group theoretical methods in physics (College Park, Md., 1984); World Sci. Publishing, 1984. p. 246 - 249.

Richardson number criterion for the nonlinear stability of three-dimensional stratified flow

H. D. I. AbarbanelD. D. HolmJ. E. MarsdenT. S. Ratiu

Physical Review Letters. 1984. DOI : 10.1103/PhysRevLett.52.2352.

Semidirect products and reduction in mechanics

J. E. MarsdenT. S. RatiuA. Weinstein

Transactions of the American Mathematical Society. 1984. DOI : 10.1090/S0002-9947-1984-0719663-1.

Stability of rigid body motion using the energy-Casimir method

D. D. HolmJ. E. MarsdenT. S. RatiuA. Weinstein

Fluids and plasmas: geometry and dynamics (Boulder, Colo., 1983); Amer. Math. Soc., 1984. p. 15 - 23.

Gauged Lie-Poisson structures

R. MontgomeryJ. E. MarsdenT. S. Ratiu

Fluids and plasmas: geometry and dynamics (Boulder, Colo., 1983); Amer. Math. Soc., 1984. p. 101 - 114.

Hamiltonian systems with symmetry, coadjoint orbits and plasma physics

J. E. MarsdenA. WeinsteinT. S. RatiuR. SchmidR. G. Spencer

1983. p. 289 - 340.

Kac-Moody Lie algebras and soliton equations. II. Lax equations associated with $A\sub{1} \sup{(1)}$

H. FlaschkaA. C. NewellT. S. Ratiu

Phys. D. 1983. DOI : 10.1016/0167-2789(83)90274-9.

Kac-Moody Lie algebras and soliton equations. III. Stationary equations associated with $A\sub{1}\sup{(1)}$

H. FlaschkaA. C. NewellT. S. Ratiu

Phys. D. 1983. DOI : 10.1016/0167-2789(83)90275-0.

Canonical maps between semidirect products with applications to elasticity and superfluids

B. A. KupershmidtT. S. Ratiu

Communications in Mathematical Physics. 1983. DOI : 10.1007/BF01205505.

Manifolds, tensor analysis, and applications

R. AbrahamJ. E. MarsdenT. S. Ratiu

Reading, Mass: Addison-Wesley Publishing Co., 1983.

Nonlinear stability conditions and a priori estimates for barotropic hydrodynamics

D. D. HolmJ. E. MarsdenT. S. RatiuA. Weinstein

Phys. Lett. A. 1983. DOI : 10.1016/0375-9601(83)90534-0.

The Lie algebraic interpretation of the complete integrability of the Rosochatius system

T. S. Ratiu

1982. p. 109 - 115. DOI : 10.1063/1.33628.

Euler-Poisson equations on Lie algebras and the $N$-dimensional heavy rigid body

T. S. Ratiu

American Journal of Mathematics. 1982. DOI : 10.2307/2374165.

Errata: "Euler-Poisson equations on Lie algebras and the $N$-dimensional heavy rigid body"

T. S. Ratiu

American Journal of Mathematics. 1982. DOI : 10.2307/2374063.

The Lagrange rigid body motion

T. S. RatiuP. van Moerbeke

Annales de l'Institut Fourier. 1982. DOI : 10.5802/aif.866.

The C. Neumann problem as a completely integrable system on an adjoint orbit

T. S. Ratiu

Transactions of the American Mathematical Society. 1981. DOI : 10.1090/S0002-9947-1981-0603766-3.

Euler-Poisson equations on Lie algebras and the $N$-dimensional heavy rigid body

T. S. Ratiu

Proc. Nat. Acad. Sci. U.S.A.. 1981. DOI : 10.1073/pnas.78.3.1327.

The differentiable structure of three remarkable diffeomorphism groups

T. S. RatiuR. Schmid

Mathematische Zeitschrift. 1981. DOI : 10.1007/BF01214340.

Involution theorems

T. S. Ratiu

1980. NSF-CBMS Conference, Lowell, Massachusetts, March 19–23, 1979. p. 219 - 257. DOI : 10.1007/BFb0092027.

The motion of the free $n$-dimensional rigid body

T. S. Ratiu

Indiana Univ. Math. J.. 1980. DOI : 10.1512/iumj.1980.29.29046.

On the smoothness of the time $t$-map of the KdV equation and the bifurcation of the eigenvalues of Hill's operator

T. S. Ratiu

1979. Biennial Seminar of the Canadian Mathematical Congress, Calgary, Alberta, June 12 – 27, 1978. p. 248 - 294. DOI : 10.1007/BFb0069808.

Relations on monoids and realization theory for dynamic systems

C. V. NegoitaD. A. RalescuT. S. Ratiu

Modern trends in cybernetics and systems (Proc. Third Internat. Congr., Bucharest, 1975), Vol. II; Springer, 1977. p. 337 - 350.

Bifurcations, semiflows, and Navier-Stokes equations

T. S. Ratiu

1977. Turbulence Seminar, Berkeley, 1976/77. p. 23 - 35. DOI : 10.1007/BFb0068358.

Elemente de analizu a localu a I

M. CraioveanuT. S. Ratiu

Timisoara: Facultatea de Stiinte ale Naturii, Universitatea din Timisoara, 1976.

Elemente de analizu a localu a II

M. CraioveanuT. S. Ratiu

Timisoara: Facultatea de Stiinte ale Naturii, Universitatea din Timisoara, 1976.

Actiuni diferentiabile de grupuri Lie compacte

D. BurgheleaA. C. AlbuT. S. Ratiu

Timisoara: Facultatea de Stiinte ale Naturii, Universitatea din Timisoara, 1975.

Completeness and projective limits of metric spaces

M. ReghisT. S. Ratiu

An. Univ. Timisoara Ser. Sti. Mat.. 1972.

On the completeness of uniform Schwartz-spaces

M. ReghisT. S. Ratiu

An. Univ. Timisoara Ser. Sti. Mat.. 1972.

Enseignement et PhD

A dirigé les thèses EPFL de

Tanya Schmah, Iosif Birtea, Aïda Timofte, Razvan Tudoran, Oana Mihaela Dragulete, François Gay-Balmaz, Madeleine Jotz

A co-dirigé les thèses EPFL de

François Marie Alain Demoures