
Pascal Frossard
EPFL STI IEL LTS4
ELE 241 (Bâtiment ELE)
Station 11
1015 Lausanne
+41 21 693 56 55
+41 21 693 26 01
Office: ELE 241
EPFL › STI › IEM › LTS4
Site web: https://lts4www.epfl.ch/
+41 21 693 56 55
EPFL › STI › STI-SEL › SEL-ENS
+41 21 693 56 55
EPFL › VPA › VPA-AVP-CP › AICENTER › AICENTER-GE
Site web: https://ai.epfl.ch/
+41 21 693 56 55
EPFL › VPS › SDSC › SDSC-GE
Site web: https://www.datascience.ch
+41 21 693 56 55
EPFL › IC › IC-DEC › IC-DO
Site web: https://ic.epfl.ch/page8797.html
+41 21 693 56 55
EPFL › STI › STI-DEC › STI-DIR
+41 21 693 56 55
EPFL › VPA › VPA-AVP-CP › AICENTER › SNAI-GE
Doctorant·es actuel·les
Abdellah Rahmani, William Cappelletti, Vincent Jung, Mahdi Amiri, Jérémy Jean Philippe Baffou, Ortal Yona Senouf, Ke Wang, Nikolaos Dimitriadis, Haolin Chen, Athanasios Charisoudis, Sevda Ögüt, Cem Bilaloglu, Alba Carballo Castro, Manuel Madeira, Yiming Qin, Elisa Messori, Adam Hazimeh, Amel Abdelraheem, Tuna Alikasifoglu, Vasiliki Rizou, Alessandro Favero
A dirigé les thèses EPFL de
Dan Jurca, Jean-Paul Wagner, Ivana Radulovic, Ivana Tosic, Effrosyni Kokiopoulou, Zafer Arican, Vijayaraghavan Thirumalai, Tamara Tosic, Eirina Bourtsoulatze, Elif Vural, Xiaowen Dong, Sofia Karygianni, Ana Karina De Abreu Goes, Dorina Thanou, Alhussein Fawzi, Stefano D'Aronco, Seyed Mohsen Moosavi Dezfooli, Renata Khasanova, Mattia Rossi, Hermina Petric Maretic, Effrosyni Simou, Beril Besbinar, Isabela Cunha Maia Nobre, Apostolos Modas, Clémentine Léa Aguet, Ahmet Caner Yüzügüler, Clément Vignac, Guillermo Ortiz Jimenez, Ádám Dániel Ivánkay, Arnaud Pannatier, Yamin Sepehri, Javier Alejandro Maroto Morales, Jelena Simeunovic
Luigi Bagnato, Suraj Srinivas, Angelos Katharopoulos, Ahmet Caner Yüzügüler, Guillermo Ortiz Jimenez, Harshitha Machiraju
Cours
EECS Seminar: Advanced Topics in Machine Learning
Students learn about advanced topics in machine learning, artificial intelligence, optimization, and data science. Students also learn to interact with scientific work, analyze and understand strengths and weaknesses of scientific arguments of both theoretical and experimental results.
Network machine learning
Fondamentaux, méthodes, algorithmes et applications de l'apprentissage automatique sur les réseaux et des réseaux neuronaux graphiques
Traitement des signaux
Dans ce cours, nous présentons les méthodes de base du traitement des signaux.