Pascal Frossard
EPFL STI IEL LTS4
ELE 241 (Bâtiment ELE)
Station 11
1015 Lausanne
+41 21 693 56 55
+41 21 693 26 01
Office: ELE 241
EPFL › STI › IEM › LTS4
Site web: https://lts4www.epfl.ch/
+41 21 693 56 55
EPFL › STI › STI-SEL › SEL-ENS
+41 21 693 56 55
EPFL › VPA › VPA-AVP-CP › AICENTER › AICENTER-GE
Site web: https://ai.epfl.ch/
+41 21 693 56 55
EPFL › VPS › SDSC › SDSC-GE
Site web: https://www.datascience.ch
+41 21 693 56 55
EPFL › IC › IC-DEC › IC-DO
Site web: https://ic.epfl.ch/page8797.html
+41 21 693 56 55
EPFL › STI › STI-DEC › STI-DIR
+41 21 693 56 55
EPFL › VPA › VPA-AVP-CP › AICENTER › SNAI-GE
Enseignement et PhD
Current Phd
Yiming Qin, Alba Carballo Castro, Elisa Messori, Ke Wang, Sevda Ögüt, Tuna Alikasifoglu, William Cappelletti, Manuel Madeira, Mahdi Amiri, Ortal Yona Senouf, Vasiliki Rizou, Nikolaos Dimitriadis, Cem Bilaloglu, Abdellah Rahmani, Amel Abdelraheem, Jérémy Jean Philippe Baffou, Adam Hazimeh, Vincent Jung
Past Phd As Director
Dan Jurca, Jean-Paul Wagner, Ivana Radulovic, Ivana Tosic, Effrosyni Kokiopoulou, Zafer Arican, Vijayaraghavan Thirumalai, Tamara Tosic, Eirina Bourtsoulatze, Elif Vural, Xiaowen Dong, Sofia Karygianni, Ana Karina De Abreu Goes, Dorina Thanou, Alhussein Fawzi, Stefano D'Aronco, Seyed Mohsen Moosavi Dezfooli, Renata Khasanova, Mattia Rossi, Hermina Petric Maretic, Effrosyni Simou, Beril Besbinar, Isabela Cunha Maia Nobre, Apostolos Modas, Clémentine Léa Aguet, Ahmet Caner Yüzügüler, Clément Vignac, Guillermo Ortiz Jimenez, Ádám Dániel Ivánkay, Arnaud Pannatier, Yamin Sepehri, Javier Alejandro Maroto Morales, Jelena Simeunovic, Haolin Chen
Past Phd As Codirector
Luigi Bagnato, Suraj Srinivas, Angelos Katharopoulos, Ahmet Caner Yüzügüler, Guillermo Ortiz Jimenez, Harshitha Machiraju, Alessandro Favero
Courses
EECS Seminar: Advanced Topics in Machine Learning
Students learn about advanced topics in machine learning, artificial intelligence, optimization, and data science. Students also learn to interact with scientific work, analyze and understand strengths and weaknesses of scientific arguments of both theoretical and experimental results.
Network machine learning
Fondamentaux, méthodes, algorithmes et applications de l'apprentissage automatique sur les réseaux et des réseaux neuronaux graphiques
Traitement des signaux
Dans ce cours, nous présentons les méthodes de base du traitement des signaux.