Joaquim Loizu

Nationality: Spain

EPFL SB SPC-TH
PPB 215 (Bâtiment PPB)
Station 13
1015 Lausanne

Joaquim Loizu was born in Barcelona, Spain. He graduated in Physics at EPFL, carrying out his Master thesis project at the Center for Bio-Inspired Technology, Imperial College London, on the theoretical and numerical study of the biophysics of light-sensitive neurons.

In 2009, he started his PhD studies at the Swiss Plasma Center of EPFL. His thesis focused on the theory of plasma-wall interactions and their effect on the mean flows and turbulence in magnetized plasmas. He obtained his PhD in 2013 and was awarded the European Physical Society Plasma Physics PhD Research Award.

In 2014, he became a Postdoctoral Research Fellow, spending one year at the Princeton Plasma Physics Laboratory (in the USA) and one year at the Max-Planck-Institute for Plasma Physics (in Germany). During this time, he worked on three-dimensional magnetohydrodynamics, studying the formation of singular currents and magnetic islands at rational surfaces.

In 2016, he obtained an Eurofusion Postdoctoral Fellowship to continue his research at the Max-Planck-Institute for Plasma Physics. During this time, he focused on the computation of 3D MHD equilibria in stellarators, including the possibility of magnetic islands and magnetic field-line chaos.

In 2018, he joined the Swiss Plasma Center as a Scientist and Lecturer. He is also a PI of the Simons Collaboration on Hidden Symmetries and Fusion Energy.

In 2020, he was awarded the Young Scientist Prize in Plasma Physics from the International Union of Pure and Applied Physics.

In 2025, he became MER (Maître d'Enseignement et Recherche) at EPFL.

Infoscience

2025

Magnetic shear effects on ballooning turbulence in the boundary of fusion devices

Z. TecchiolliA. J. Caeiro Heitor CoelhoJ. LoizuB. J. S. P. De LuccaP. Ricci

Physics of Plasmas. 2025. Vol. 32, num. 10. DOI : 10.1063/5.0282485.

Turnstile flux as a measure for chaotic transport in magnetic confinement fusion devices

C. B. SmietL. RaisJ. LoizuR. Davies

Chaos: An Interdisciplinary Journal of Nonlinear Science. 2025. Vol. 35, num. 7, p. 073129. DOI : 10.1063/5.0275878.

Measurements of radial neutral density profiles from Balmer-α emission in Wendelstein 7-X

T. RombaF. ReimoldO. P. FordT. W. NeelisP. Poloskei  et al.

Plasma Physics and Controlled Fusion. 2025. Vol. 67, num. 5, p. 055045. DOI : 10.1088/1361-6587/add375.

Sawtooth crash in tokamak as a sequence of multi-region relaxed MHD equilibria

Z. QuY. ZhouA. KumarJ. DoakJ. Loizu  et al.

Physics of Plasmas. 2025. Vol. 32, num. 5, p. 1 - 13. DOI : 10.1063/5.0260347.

Electron trapping in gyrotron electron guns: Validation of the FENNECS code with the T-REX experiment

P. P. L. Giroud-GaramponF. RomanoG. Le BarsJ. LoizuJ.-P. Hogge  et al.

Physics of Plasmas. 2025. Vol. 32, num. 5. DOI : 10.1063/5.0267466.

Efficient single-stage optimization of islands in finite-β stellarator equilibria

C. B. SmietJ. LoizuE. BalkovicA. Baillod

Physics of Plasmas. 2025. Vol. 32, num. 1, p. 012504. DOI : 10.1063/5.0226402.

2024

Constructing nested coordinates inside strongly shaped toroids using an action principle

Z. TecchiolliS. HudsonJ. LoizuR. KöberlF. Hindenlang  et al.

Journal of Plasma Physics. 2024. Vol. 90, num. 6, p. 905900614. DOI : 10.1017/S0022377824001119.

Direct prediction of saturated neoclassical tearing modes in slab using an equilibrium approach

E. BalkovicJ. LoizuJ. GravesY.-HuangC. B. Smiet

Plasma Physics and Controlled Fusion. 2024. DOI : 10.1088/1361-6587/ad97dd.

Overview of the first Wendelstein 7-X long pulse campaign with fully water-cooled plasma facing components

O. GrulkeC. AlbertJ. A. BellosoP. AleynikovK. Aleynikova  et al.

Nuclear Fusion. 2024. Vol. 64, num. 11, p. 112002. DOI : 10.1088/1741-4326/ad2f4d.

Simplified and Flexible Coils for Stellarators using Single-Stage Optimization

R. JorgeA. GiulianiJ. Loizu

Physics of Plasmas. 2024. Vol. 31, p. 112501. DOI : 10.1063/5.0226688.

FENNECS: a novel particle-in-cell code for simulating the formation of magnetized non-neutral plasmas trapped by electrodes of complex geometries

G. Le BarsJ. LoizuS. GuinchardJ.-P. HoggeA. Cerfon  et al.

Computer Physics Communications. 2024. Vol. 303, p. 109268. DOI : 10.1016/j.cpc.2024.109268.

Design and First Tests of the Trapped Electrons Experiment T-REX

F. RomanoG. Le BarsJ. LoizuM. NoëlJ.-Hogge  et al.

Review of Scientific Instruments. 2024. Vol. 95, num. 10. DOI : https://doi.org/10.1063/5.0212127.

Parallel flows as a key component to interpret Super-X divertor experiments

M. CarpitaO. FévrierH. ReimerdesC. TheilerB. Duval  et al.

Nuclear Fusion. 2024. Vol. 64, num. 4, p. 046019. DOI : 10.1088/1741-4326/ad2a2a.

Global fluid simulation of plasma turbulence in stellarators with the GBS code

A. CoelhoJ. LoizuP. RicciZ. Tecchiolli

Nuclear Fusion. 2024. Vol. 64, num. 7, p. 076057. DOI : 10.1088/1741-4326/ad4ef5.

2023

Erratum: Structure of pressure-gradient-driven current singularity in ideal magnetohydrodynamic equilibrium (vol 65, 034008, 2023)

Y.-M. HuangY. ZhouJ. LoizuS. HudsonA. Bhattacharjee

Plasma Physics And Controlled Fusion. 2023. Vol. 65, num. 12, p. 129601. DOI : 10.1088/1361-6587/ad0852.

Erratum: “Numerical study of δ-function current sheets arising from resonant magnetic perturbations” [Phys. Plasmas 29, 032513 (2022)]

Y.-M. HuangS. R. HudsonJ. LoizuY. ZhouA. Bhattacharjee

Physics Of Plasmas. 2023. Vol. 30, num. 11, p. 119901. DOI : 10.1063/5.0182390.

Equilibrium β-limits dependence on bootstrap current in classical stellarators

A. BaillodJ. LoizuZ. S. QuH. P. ArbezJ. Graves

Journal of Plasma Physics. 2023. Vol. 89, num. 5, p. 905890508. DOI : 10.1017/S0022377823000910.

Nonlinear saturation of resistive tearing modes in a cylindrical tokamak with and without solving the dynamics

J. LoizuD. Bonfiglio

Journal of Plasma Physics. 2023. Vol. 89, num. 5, p. 905890507. DOI : 10.1017/S0022377823000934.

Validation of GBS plasma turbulence simulation of the TJ-K stellarator

A. J. CoelhoJ. LoizuP. RicciM. RamischA. Koehn-Seemann  et al.

Plasma Physics And Controlled Fusion. 2023. Vol. 65, num. 8, p. 085018. DOI : 10.1088/1361-6587/ace4f3.

On the relationship between the multi-region relaxed variational principle and resistive inner-layer theory

A. KumarJ. LoizuM. HoleZ. QuS. Hudson  et al.

Plasma Physics and Controlled Fusion. 2023. Vol. 65, p. 075004. DOI : 10.1088/1361-6587/acc96e.

First self-consistent simulations of trapped electron clouds in a gyrotron gun and comparison with experiments

G. Le BarsJ. LoizuJ.-P. HoggeS. AlbertiF. Romano  et al.

Physics of Plasmas. 2023. Vol. 30, num. 3, p. 030702. DOI : 10.1063/5.0136340.

Structure of pressure-gradient-driven current singularity in ideal magnetohydrodynamic equilibrium

Y.-M. HuangY. ZhouJ. LoizuS. HudsonA. Bhattacharjee

Plasma Physics and Controlled Fusion. 2023. Vol. 65, p. 034008. DOI : 10.1088/1361-6587/acb382.

Plasma turbulence simulations in a diverted tokamak with applied resonant magnetic perturbations

T. BoinnardA. J. Caeiro Heitor CoelhoJ. LoizuP. Ricci

Nuclear Fusion. 2023. Vol. 63, num. 7, p. 076005. DOI : 10.1088/1741-4326/acd403.

2022

Self-consistent formation and steady-state characterization of trapped high-energy electron clouds in the presence of a neutral gas background

G. Le BarsJ.-P. HoggeA. CerfonS. AlbertiJ. Loizu  et al.

Physics of Plasmas. 2022. Vol. 29, num. 8, p. 082105. DOI : 10.1063/5.0098567.

Erratum: “Unified nonlinear theory of spontaneous and forced helical resonant MHD states” [Phys. Plasmas 24, 040701 (2017)]

J. LoizuP. Helander

Physics Of Plasmas. 2022. Vol. 29, num. 8, p. 089901. DOI : 10.1063/5.0111547.

Nature of ideal MHD instabilities as described by multi-region relaxed MHD

A. KumarC. NuehrenbergZ. QuM. J. HoleJ. Doak  et al.

Plasma Physics And Controlled Fusion. 2022. Vol. 64, num. 6, p. 065001. DOI : 10.1088/1361-6587/ac53ee.

Global fluid simulation of plasma turbulence in a stellarator with an island divertor

A. J. Caeiro Heitor CoelhoJ. LoizuP. RicciM. Giacomin

Nuclear Fusion. 2022. Vol. 62, p. 074004. DOI : 10.1088/1741-4326/ac6ad2.

Stellarator optimization for nested magnetic surfaces at finite β and toroidal current

A. BaillodJ. LoizuJ. P. GravesM. Landreman

Physics of Plasmas. 2022. Vol. 29, num. 4, p. 042505. DOI : 10.1063/5.0080809.

Overview of the TCV tokamak experimental programme

H. ReimerdesM. AgostiniE. AlessiS. AlbertiY. Andrebe  et al.

Nuclear Fusion. 2022. Vol. 62, num. 4, p. 042018. DOI : 10.1088/1741-4326/ac369b.

Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

T. S. PedersenI. AbramovicP. AgostinettiM. A. TorresS. Aekaeslompolo  et al.

Nuclear Fusion. 2022. Vol. 62, num. 4, p. 042022. DOI : 10.1088/1741-4326/ac2cf5.

Numerical study of delta-function current sheets arising from resonant magnetic perturbations

Y.-M. HuangS. R. HudsonJ. LoizuY. ZhouA. Bhattacharjee

Physics Of Plasmas. 2022. Vol. 29, num. 3, p. 032513. DOI : 10.1063/5.0067898.

2021

Model for current drive induced crash cycles in W7-X

K. AleynikovaS. R. HudsonP. HelanderA. KumarJ. Geiger  et al.

Nuclear Fusion. 2021. Vol. 61, num. 12, p. 126040. DOI : 10.1088/1741-4326/ac2ab9.

On the non-existence of stepped-pressure equilibria far from symmetry

Z. QuS. HudsonR. DewarJ. LoizuM. Hole

Plasma Physics and Controlled Fusion. 2021. Vol. 63, num. 12, p. 125007. DOI : 10.1088/1361-6587/ac2afc.

Computation of multi-region, relaxed magnetohydrodynamic equilibria with prescribed toroidal current profile

A. BaillodJ. LoizuZ. QuA. KumarJ. Graves

Journal of Plasma Physics. 2021. Vol. 87, num. 4, p. 905870403. DOI : 10.1017/S0022377821000520.

Parallel convection and E × B drifts in the TCV snowflake divertor and their effects on target heat-fluxes

C. TsuiJ. BoedoD. GalassiJ. LoizuR. Maurizio  et al.

Nuclear Fusion. 2021. Vol. 61, num. 4, p. 046004. DOI : 10.1088/1741-4326/abdb93.

Computation of linear MHD instabilities with Multi-region Relaxed MHD energy principle

A. KumarZ. QuM. J. HoleA. WrightJ. Loizu  et al.

Plasma Physics and Controlled Fusion. 2021. Vol. 63, num. 4, p. 045006. DOI : 10.1088/1361-6587/abdbd0.

2020

Experimental verification of X-point potential well formation in unfavorable magnetic field direction

M. WensingH. de OliveiraJ. LoizuC. ColandreaO. Février  et al.

Nuclear Materials and Energy. 2020. Vol. 25, p. 1 - 4, 100839. DOI : 10.1016/j.nme.2020.100839.

Direct prediction of nonlinear tearing mode saturation using a variational principle

J. LoizuY.-M. HuangS. HudsonA. BaillodZ. Qu  et al.

Physics of Plasmas. 2020. Vol. 27, num. 7, p. 070701. DOI : 10.1063/5.0009110.

Free-boundary MRxMHD equilibrium calculations using the stepped-pressure equilibrium code

S. HudsonJ. LoizuC. ZhuZ. QuC. Nührenberg  et al.

Plasma Physics and Controlled Fusion. 2020. Vol. 62, num. 8, p. 084002. DOI : 10.1088/1361-6587/ab9a61.

X-point potential well formation in diverted tokamaks with unfavorable magnetic field direction

M. WensingJ. LoizuH. ReimerdesB. DuvalM. Wischmeier

Nuclear Fusion. 2020. Vol. 60, num. 5, p. 1 - 6, 054005. DOI : 10.1088/1741-4326/ab7d4f.

2019

Multi-region relaxed magnetohydrodynamic stability of a current sheet

J. LoizuS. R. Hudson

Physics of Plasmas. 2019. Vol. 26, num. 3, p. 030702. DOI : 10.1063/1.5091765.

Properties of a new quasi-axisymmetric configuration

S. A. HennebergM. DrevlakC. NuehrenbergC. D. BeidlerY. Turkin  et al.

Nuclear Fusion. 2019. Vol. 59, num. 2, p. 026014. DOI : 10.1088/1741-4326/aaf604.

2017

Poloidal asymmetry in the narrow heat flux feature in the TCV scrape-off layer

C. K. TsuiJ. A. BoedoF. D. HalpernJ. LoizuF. Nespoli  et al.

Physics of Plasmas. 2017. Vol. 24, num. 6, p. 062508. DOI : 10.1063/1.4985075.

Unified nonlinear theory of spontaneous and forced helical resonant MHD states

J. LoizuP. Helander

Physics of Plasmas. 2017. Vol. 24, num. 4, p. 040701. DOI : 10.1063/1.4979678.

Scrape-off-layer current loops and floating potential in limited tokamak plasmas

J. LoizuJ. A. MoralesF. D. HalpernP. RicciP. Paruta

Journal of Plasma Physics. 2017. Vol. 83, num. 6, p. 575830601. DOI : 10.1017/S0022377817000927.

A comparison between a refined two-point model for the limited tokamak SOL and self-consistent plasma turbulence simulations

C. WersalP. RicciJ. Loizu

Plasma Physics and Controlled Fusion. 2017. Vol. 59, num. 4, p. 044011. DOI : 10.1088/1361-6587/aa5cf9.

Equilibrium 𝛽-limits in classical stellarators

J. LoizuS. R. HudsonC. NührenbergJ. GeigerP. Helander

Journal of Plasma Physics. 2017. Vol. 83, num. 6, p. 575830601. DOI : 10.1017/S0022377817000861.

2016

Pressure-driven amplification and penetration of resonant magnetic perturbations

J. LoizuS. R. HudsonP. HelanderS. A. LazersonA. Bhattacharjee

Physics of Plasmas. 2016. Vol. 23, num. 5, p. 055703. DOI : 10.1063/1.4944818.

Verification of the SPEC code in stellarator geometries

J. LoizuS. R. HudsonC. Nührenberg

Physics of Plasmas. 2016. Vol. 23, num. 11, p. 112505. DOI : 10.1063/1.4967709.

Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code

S. A. LazersonJ. LoizuS. HirshmanS. R. Hudson

Physics of Plasmas. 2016. Vol. 23, num. 1, p. 012507. DOI : 10.1063/1.4939881.

The GBS code for tokamak scrape-off layer simulations

F. HalpernP. RicciS. JollietJ. LoizuJ. Morales  et al.

Journal of Computational Physics. 2016. Vol. 315, p. 388 - 408. DOI : 10.1016/j.jcp.2016.03.040.

2015

Numerical approach to the parallel gradient operator in tokamak scrape-off layer turbulence simulations and application to the GBS code

S. JollietF. HalpernJ. LoizuA. MosettoF. Riva  et al.

Computer Physics Communications. 2015. Vol. 188, p. 21 - 32. DOI : 10.1016/j.cpc.2014.10.020.

Plasma turbulence, suprathermal ion dynamics and code validation on the basic plasma physics device TORPEX

I. FurnoF. AvinoA. BovetA. DialloA. Fasoli  et al.

Journal of Plasma Physics. 2015. Vol. 81, num. 3, p. 345810301. DOI : 10.1017/S0022377815000161.

Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets

J. LoizuS. R. HudsonA. BhattacharjeeS. LazersonP. Helander

Physics of Plasmas. 2015. Vol. 22, num. 9, p. 090704. DOI : 10.1063/1.4931094.

Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria

J. LoizuS. HudsonA. BhattacharjeeP. Helander

Physics of Plasmas. 2015. Vol. 22, num. 2, p. 022501. DOI : 10.1063/1.4906888.

Approaching the investigation of plasma turbulence through a rigorous verification and validation procedure: A practical examplea)

P. RicciF. RivaC. TheilerA. FasoliI. Furno  et al.

Physics of Plasmas. 2015. Vol. 22, num. 5, p. 055704. DOI : 10.1063/1.4919276.

Finite ion temperature effects on scrape-off layer turbulence

A. MosettoF. D. HalpernS. JollietJ. LoizuP. Ricci

Physics of Plasmas. 2015. Vol. 22, num. 1, p. 012308. DOI : 10.1063/1.4904300.

2014

Pre-sheath density drop induced by ion-neutral friction along plasma blobs and implications for blob velocities

I. FurnoC. TheilerV. ChablozA. FasoliJ. Loizu

Physics Of Plasmas. 2014. Vol. 21, p. 012305. DOI : 10.1063/1.4862778.

Theory of the scrape-off layer width in inner-wall limited tokamak plasmas

F. D. HalpernP. RicciS. JollietJ. LoizuA. Mosetto

Nuclear Fusion. 2014. Vol. 54, num. 4, p. 043003. DOI : 10.1088/0029-5515/54/4/043003.

Three-dimensional simulations of blob dynamics in a simple magnetized torus

F. D. HalpernA. CardelliniP. RicciS. JollietJ. Loizu  et al.

Physics of Plasmas. 2014. Vol. 21, num. 2, p. 022305. DOI : 10.1063/1.4864324.

Intrinsic toroidal rotation in the scrape-off layer of tokamaks

J. LoizuP. RicciF. D. HalpernS. JollietA. Mosetto

Physics of Plasmas. 2014. Vol. 21, num. 6, p. 062309. DOI : 10.1063/1.4883498.

Effect of the limiter position on the scrape-off layer width, radial electric field and intrinsic flows

J. LoizuP. RicciF. D. HalpernS. JollietA. Mosetto

Nuclear Fusion. 2014. Vol. 54, num. 8, p. 083033. DOI : 10.1088/0029-5515/54/8/083033.

Aspect ratio effects on limited scrape-off layer plasma turbulence

S. JollietF. D. HalpernJ. LoizuA. MosettoP. Ricci

Physics of Plasmas. 2014. Vol. 21, num. 2, p. 022303. DOI : 10.1063/1.4863956.

Verification methodology for plasma simulations and application to a scrape-off layer turbulence code

F. RivaP. RicciF. D. HalpernS. JollietJ. Loizu  et al.

Physics of Plasmas. 2014. Vol. 21, num. 6, p. 062301. DOI : 10.1063/1.4879778.

2013

Turbulent regimes in the tokamak scrape-off layer

A. MosettoF. D. HalpernS. JollietJ. LoizuP. Ricci

Physics of Plasmas. 2013. Vol. 20, num. 9, p. 092308. DOI : 10.1063/1.4821597.

Basic investigations of electrostatic turbulence and its interaction with plasma and suprathermal ions in a simple magnetized toroidal plasma

A. FasoliF. AvinoA. BovetI. FurnoK. Gustafson  et al.

Nuclear Fusion. 2013. Vol. 53, num. 6, p. 063013. DOI : 10.1088/0029-5515/53/6/063013.

Ideal ballooning modes in the tokamak scrape-off layer

F. D. HalpernS. JollietJ. LoizuA. MosettoP. Ricci

Physics of Plasmas. 2013. Vol. 20, num. 5, p. 052306. DOI : 10.1063/1.4807333.

On the electrostatic potential in the scrape-off layer of magnetic confinement devices

J. LoizuP. RicciF. D. HalpernS. JollietA. Mosetto

Plasma Physics and Controlled Fusion. 2013. Vol. 55, num. 12, p. 124019. DOI : 10.1088/0741-3335/55/12/124019.

Theory-based scaling of the SOL width in circular limited tokamak plasmas

F. D. HalpernP. RicciB. LabitI. FurnoS. Jolliet  et al.

Nuclear Fusion. 2013. Vol. 53, num. 12, p. 122001. DOI : 10.1088/0029-5515/53/12/122001.

2012

Properties of convective cells generated in magnetized toroidal plasmas

C. TheilerJ. LoizuI. FurnoA. FasoliP. Ricci

Physics of Plasmas. 2012. Vol. 19, num. 8, p. 082304. DOI : 10.1063/1.4740056.

Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation

P. RicciF. D. HalpernS. JollietJ. LoizuA. Mosetto  et al.

Plasma Physics and Controlled Fusion. 2012. Vol. 54, num. 12, p. 124047. DOI : 10.1088/0741-3335/54/12/124047.

Convective cells and blob control in a simple magnetized plasma

C. G. TheilerI. FurnoJ. LoizuA. Fasoli

Physical Review Letters. 2012. Vol. 108, num. 6, p. 065005. DOI : 10.1103/PhysRevLett.108.065005.

Potential of a plasma bound between two biased walls

J. LoizuJ. DominskiP. RicciC. Theiler

Physics of Plasmas. 2012. Vol. 19, num. 8, p. 083507. DOI : 10.1063/1.4745863.

Boundary conditions for plasma fluid models at the magnetic presheath entrance

J. LoizuP. RicciF. D. HalpernS. Jolliet

Physics of Plasmas. 2012. Vol. 19, num. 12, p. 122307. DOI : 10.1063/1.4771573.

2011

Methodology for turbulence code validation: Quantification of simulation-experiment agreement and application to the TORPEX experiment

P. RicciC. TheilerA. FasoliI. FurnoK. Gustafson  et al.

Physics of Plasmas. 2011. Vol. 18, num. 3, p. 032109. DOI : 10.1063/1.3559436.

Existence of subsonic plasma sheaths

J. LoizuP. RicciC. Theiler

Physical Review E. 2011. Vol. 83, num. 1, p. 016406. DOI : 10.1103/PhysRevE.83.016406.

2010

Electrostatic instabilities, turbulence and fast ion interactions in the TORPEX device

A. FasoliA. BurckelL. FederspielI. FurnoK. Gustafson  et al.

Plasma Physics and Controlled Fusion. 2010. Vol. 52, num. 12, p. 124020. DOI : 10.1088/0741-3335/52/12/124020.

Research

Current Research Fields

My current research interests include stellarators, MHD equilibrium and stability, magnetic reconnection, non-neutral plasmas, plasma sheaths, plasma turbulence, and plasma transport in chaotic magnetic fields.

Teaching & PhD

PhD Students

Zeno Tecchiolli, Pierrick Paul Louis Giroud-Garampon, Erol Balkovic, Ludovic Rais

Past EPFL PhD Students as codirector

Guillaume Michel Le Bars, Antoine Baillod, António João Caeiro Heitor Coelho

Courses

General physics : electromagnetism

PHYS-201(a)

The topics covered by the course are concepts of electromagnetism and electromagnetic waves.

Introduction to plasma physics

PHYS-325

Introduction to plasma physics aimed at giving an overall view of the unique properties specific to a plasma. The models commonly used to describe its behavior are presented and illustrated with examples. Application to thermonuclear fusion and some astrophysical phenomena.

Magnetic confinement

PHYS-731

To provide an overview of the fundamentals of magnetic confinement (MC) of plasmas for fusion.The different MC configurations are presented, with a description of their operating regimes.The basic elements of particle & energy transport, of plasma-wall interaction & of burning plasma are introduced.