Aleksandra Radenovic

Nationality: Croatian and Swiss

EPFL STI IBI-STI LBEN
BM 2140 (Bâtiment BM)
Station 17
1015 Lausanne

Expertise

Single molecule biophysics
Solid State Nanopores
2-D materials
Optical tweezers
Second Harmonic Generation
Super -resolution microscopy
Signaling

Current work

My lab works in the research field that can be termed single molecule biophysics. We develop techniques and methodologies based on optical imaging, biosensing and single molecule manipulation with the aim to monitor the behavior of individual biological molecules and complexes in vitro and in live cells. Our current research is focused on three major directions:
(i) Developing and using nanopores as platform for molecular sensing and manipulation. In particular we focus on solid-state nanopores realized either in glass nanocapillaries, or on suspended 2d-material membranes and standard silicon-nitride membranes.
(ii) Studying how biomolecules function, especially how proteins and nucleic acids interact, using force-based manipulation single-molecule techniques, in particular optical tweezers, optical wrench system, Anti- Brownian Electrokinetic (ABEL) trap and combination of nanopore/nanocapillaries with OT.
(iii) Developing super-resolution optical microscopy, based on single molecule localizations (SMLM) in cells with molecular-scale resolution, with an aim to extract quantitative information.

Mission

Many biomolecules show remarkably more complex behavior at the single-molecule level than it is observed in bulk, ensemble-averaged experiments. It is now evident that sparsely populated molecular sub-states are vital for the biological function. Insights into complex behavior can be gained through manipulation, imaging or sensing of single biomolecules.
Single-molecule techniques can provide us with extraordinarily clear and often surprising views of biomolecules in action. Development of appropriate instrumentation has been identified as the key ingredient for advances in biophysical sciences. Three most important examples here are single molecule localization microscopy (SMLM), optical tweezers and nanopores. SMLM made it possible to «see» by visualizing single fluorophores in living cells while laser-based optical tweezers allowed us to «touch» with experiments on physical forces involved in stretching and binding of biomolecules, while nanopores, the simplest and the most recent single molecule technique allows for rapid and high-throughput biosensing and discrimination of atto–molar molecule concentrations.
From April 2021 Full Professor
2015 -2021 Associate Professor
2008-2015 Tenure-Track Assistant Professor
2004-2007 Postdoc at the University of California, Berkeley in the group of Prof.Liphardt
2003 PhD student of Prof. Dietler in Laboratory of Physics of Living Matter, University of Lausanne
1999 Diploma thesis on the subject of the Raman spectroscopy of beta carotene
1994-1999 Physics department at the University of Zagreb
1994 baccalaureate, Classical gymnasium

Awards/Achievements

2016 CCMX Materials challenge award
2015 SNSF-ERC Consolidator Grant
2010 ERC Starting Grant
2003 Fellowship of the Swiss National Science Foundation

Curriculum Vitae

Curriculum Vitae CV

Patents

Patent Number: WO07079411
ALIGNMENT, TRANSPORTATION AND INTEGRATION OF NANOWIRES USING OPTICAL TRAPPING
Publication date: 2007-07-12.
Link
Patent Number:PCT/IB2013/052093
MANUFACTURING OF ORIFICES IN GLASS LIKE MATERIALS, E.G. NANOCAPILLARIES AND OBJECT OBTAINED ACCORDING TO THIS PROCESS
Publication date: 2014-25-03
Link US patent
Patent Number: WO2015121394
MOLECULAR SENSING DEVICE-
Publication date: 2015-20-08
Link
Patent Number: WO2016142925A1
NANOPORE FORMING METHOD AND USES THEREOF WO2016142925A1
Publication date :2016-15-09
Link
Patent Number: WO2018002099 OSMOTIC POWER GENERATION IN 2D NANOPORES
Publication date :2018-15-09
Publication date :2016-15-09
Link Link US patent
Patent application:BENCHMARKING OF SINGLE IMAGING DATASETS19 180 900.3 - Your ref.: 6.1943 - Our ref.: 34623EP Patent applicationSYSTEMS AND METHODS FOR DIGITAL INFORMATION DECODING AND DATA STORAGE IN HYBRID MACROMOLECULES
2020 September

Awards

SNSF Fellowship

Swiss National Science Foundation

2003

ERC Starting Grant

European Research Council

2010

SNSF-ERC Consolidator Grant

2015

ERC Advanced Grant

2021

CCMX Materials challenge award

2016

Optica Fellow

Optica

2021

LBEN Thesis

[16] 2D MoS2 Nanopores: Wafer-scale Fabrication and Monolayer Stability for Long-term Single-Molecule Sensing

M. Thakur / A. Radenovic (Dir.)

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-9538.

[15] Molybdenum disulphide nanoporous membranes as nanofluidic platforms - large-area engineering and study

M. D. Macha / A. Radenovic (Dir.)

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-8787.

[14] Multidisciplinary Investigation of the Gut-Brain Ecosystem in a Model of Alzheimer's Disease

A. L. Planchette / A. RadenovicA. J. Macpherson (Dir.)

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-8532.

[13] Exploring optically active defects in wide-bandgap materials using fluorescence microscopy

E. Glushkov / A. Radenovic (Dir.)

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-8204.

[12] Biophysical applications of correlative scanning probe and super-resolution microscopy

V. Navikas / A. Radenovic (Dir.)

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-9021.

[11] Fundamental Applications of Nanopores: Controlled DNA Translocations to Nanofluidics

S. J. Davis / A. RadenovicS. Marion (Dir.)

Lausanne, EPFL, 2020. DOI : 10.5075/epfl-thesis-7693.

[10] Electrochemical and morphological engineering of 2D materials for nanopore sensing

M. Lihter / A. Radenovic (Dir.)

Lausanne, EPFL, 2020. DOI : 10.5075/epfl-thesis-7588.

[9] Development of novel experimental and computational methods for three-dimensional coherent and super-resolution microscopy

A. C.-F. R. Descloux / A. Radenovic (Dir.)

Lausanne, EPFL, 2020. DOI : 10.5075/epfl-thesis-7942.

[8] 2D nanopores: fabrication, energy harvesting and field-effect sensing

M. Graf / A. Radenovic (Dir.)

Lausanne, EPFL, 2019. DOI : 10.5075/epfl-thesis-9516.

[7] Nanocapillaries combined with optical tweezers as a single molecule technique for studying DNA-protein complexes

R. Bulushev / A. Radenovic (Dir.)

Lausanne, EPFL, 2017. DOI : 10.5075/epfl-thesis-7608.

[6] Probing chemical structures and physical processes with nanopores

J. Feng / A. Radenovic (Dir.)

Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-7082.

[5] Nanoscale Magnetometry with Single Fluorescent Nanodiamonds Manipulated in an Anti-Brownian Electrokinetic Trap

M. Kayci / A. Radenovic (Dir.)

Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-6972.

[4] Analytical Methods, Correlative Microscopy and Software Tools for Quantitative Single Molecule Localization Microscopy

A. Shivanandan / A. RadenovicI. Sbalzarini (Dir.)

Lausanne, EPFL, 2015. DOI : 10.5075/epfl-thesis-6726.

[3] Alkaline niobate nanostructures as opto-mechanical probes

F. Dutto / A. Radenovic (Dir.)

Lausanne, EPFL, 2014. DOI : 10.5075/epfl-thesis-6214.

[2] Nanopore sensing of single molecules application to RNAP-DNA complexes, fabrication of graphene-nanopore devices and translocation algorithm analysis

C. Raillon / A. RadenovicN. Hernandez (Dir.)

Lausanne, EPFL, 2012. DOI : 10.5075/epfl-thesis-5570.

[1] Investigating the Impact of Single Molecule Fluorescence Dynamics on Photo Activated Localization Microscopy Experiments

P. Annibale / A. Radenovic (Dir.)

Lausanne, EPFL, 2012. DOI : 10.5075/epfl-thesis-5517.

Peer reviewed journal articles

2024

[159] Fluorescence microscopy: A statistics-optics perspective

M. FazelK. S. GrussmayerB. FerdmanA. RadenovicY. Shechtman  et al.

Reviews Of Modern Physics. 2024-06-05. DOI : 10.1103/RevModPhys.96.025003.

[158] CVD graphene contacts for lateral heterostructure MoS2 field effect transistors

D. S. SchneiderL. LucchesiE. ReatoZ. WangA. Piacentini  et al.

Npj 2D Materials And Applications. 2024-05-10. DOI : 10.1038/s41699-024-00471-y.

[157] Label-Free Techniques for Probing Biomolecular Condensates

K. A. IbrahimA. S. NaiduH. MiljkovicA. RadenovicW. Yang

Acs Nano. 2024-04-12. DOI : 10.1021/acsnano.4c01534.

[156] Nanofluidic logic with mechano-ionic memristive switches

T. EmmerichY. TengN. RoncerayE. LoprioreR. Chiesa  et al.

Nature Electronics. 2024-03-19. DOI : 10.1038/s41928-024-01137-9.

[155] Open-source microscope add-on for structured illumination microscopy

M. T. M. HannebelleE. RaethS. M. LeitaoT. LukesJ. Pospisil  et al.

Nature Communications. 2024-02-20. DOI : 10.1038/s41467-024-45567-7.

[154] AI-driven detection and analysis of label-free protein aggregates

K. A. Ibrahim

Nature Reviews Molecular Cell Biology. 2024-02-08. DOI : 10.1038/s41580-024-00708-0.

2023

[153] Liquid-activated quantum emission from native hBN defects for nanofluidic sensing

N. RoncerayY. YouE. GlushkovM. LihterB. Rehl  et al.

Nature Materials. 2023-08-31. DOI : 10.1038/s41563-023-01658-2.

[152] Confinement-Controlled Water Engenders Unusually High Electrochemical Capacitance

S. MelnikA. RyzhovA. KiselevA. RadenovicT. Weil  et al.

Journal Of Physical Chemistry Letters. 2023-07-17. DOI : 10.1021/acs.jpclett.3c01498.

[151] Selective Growth of van der Waals Heterostructures Enabled by Electron-Beam Irradiation

J. SitekK. Czerniak-LosiewiczA. P. GertychM. GizaP. Dabrowski  et al.

Acs Applied Materials & Interfaces. 2023-07-07. DOI : 10.1021/acsami.3c02892.

[150] Nature-Inspired Stalactite Nanopores for Biosensing and Energy Harvesting

A. ChernevY. TengM. ThakurV. BoureauL. Navratilova  et al.

Advanced Materials. 2023-07-06. DOI : 10.1002/adma.202302827.

[149] Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds

S. M. LeitaoV. NavikasH. MiljkovicB. DrakeS. Marion  et al.

Nature Nanotechnology. 2023-06-19. DOI : 10.1038/s41565-023-01412-4.

[148] Nanoscale thermal control of a single living cell enabled by diamond heater-thermometer

A. M. RomshinV. ZeebE. GlushkovA. RadenovicA. G. Sinogeikin  et al.

Scientific Reports. 2023-05-26. DOI : 10.1038/s41598-023-35141-4.

[147] The Three-Phase Contact Potential Difference Modulates the Water Surface Charge

V. ArtemovL. FrankR. DoroninP. StaerkA. Schlaich  et al.

Journal Of Physical Chemistry Letters. 2023-05-16. DOI : 10.1021/acs.jpclett.3c00479.

[146] The Three-Phase Contact Potential Difference Modulates the Water Surface Charge

V. ArtemovL. FrankR. DoroninP. StaerkA. Schlaich  et al.

Journal Of Physical Chemistry Letters. 2023-05-16. DOI : 10.1021/acs.jpclett.3c00479.

[145] Optical imaging of the small intestine immune compartment across scales

A. L. PlanchetteC. SchmidtO. BurriM. G. de AgueeroA. Radenovic  et al.

Communications Biology. 2023-03-31. DOI : 10.1038/s42003-023-04642-3.

[144] High durability and stability of 2D nanofluidic devices for long-term single-molecule sensing

M. ThakurN. CaiM. ZhangY. TengA. Chernev  et al.

Npj 2D Materials And Applications. 2023-02-23. DOI : 10.1038/s41699-023-00373-5.

[143] Defect engineering of 2D material for biosensing applications

W. YangJ. SulzleY. ShimodaE. MaynerM. Macha  et al.

2023-02-10. p. 278A-278A. DOI : 10.1016/j.bpj.2022.11.1584.

[142] Imaging of interactions of biomolecules with nanomaterials with interferometric scattering microscopy

J. SulzleW. YangY. ShimodaE. S. MaynerM. Macha  et al.

2023-02-10. p. 153A-153A.

[141] Substitutional p‐type Doping in NbS2‐MoS2 Lateral Heterostructures Grown by MOCVD

Z. WangM. TripathiZ. GolsanamlouP. KumariG. Lovarelli  et al.

Advanced Materials. 2023-01-16. DOI : 10.1002/adma.202209371.

[140] Synthesis of Fluorescent Cyclic Peptides via Gold(I)-Catalyzed Macrocyclization

X.-Y. LiuW. CaiN. RoncerayA. RadenovicB. Fierz  et al.

Journal of the American Chemical Society. 2023. DOI : 10.1021/jacs.3c09261.

[139] A large-scale integrated vector–matrix multiplication processor based on monolayer molybdenum disulfide memories

G. Migliato MaregaH. G. JiZ. WangG. PasqualeM. Tripathi  et al.

Nature Electronics. 2023. DOI : 10.1038/s41928-023-01064-1.

[138] How to Achieve Large-Area Ultra-Fast Operation of MoS 2 Monolayer Flash Memories?

G. M. MaregaZ. WangY. ZhaoH. G. JiA. Ottesen  et al.

IEEE Nanotechnology Magazine. 2023. DOI : 10.1109/MNANO.2023.3297118.

2022

[137] High-Throughput Nanopore Fabrication and Classification Using Xe-Ion Irradiation and Automated Pore-Edge Analysis

M. MachaS. MarionM. TripathiM. ThakurM. Lihter  et al.

Acs Nano. 2022-09-26. DOI : 10.1021/acsnano.2c05201.

[136] Wafer-scale MoS2 with water-vapor assisted showerhead MOCVD

M. MachaH. G. JiM. TripathiY. ZhaoM. Thakur  et al.

Nanoscale Advances. 2022-09-02. DOI : 10.1039/d2na00409g.

[135] Stress induced delamination of suspended MoS2 in aqueous environments

M. MachaM. ThakurA. RadenovicS. Marion

Physical Chemistry Chemical Physics. 2022-07-29. DOI : 10.1039/d2cp02094g.

[134] Stable Al2O3 Encapsulation of MoS2 ‐FETs Enabled by CVD Grown h‐BN

A. PiacentiniD. MarianD. S. SchneiderE. González MarínZ. Wang  et al.

Advanced Electronic Materials. 2022-04-29. DOI : 10.1002/aelm.202200123.

[133] Three-step, transfer-free growth of MoS2/WS2/graphene vertical van der Waals heterostructure

J. SitekI. PasternakK. Czerniak-LosiewiczM. SwiniarskiP. P. Michalowski  et al.

2D Materials. 2022-04-01. DOI : 10.1088/2053-1583/ac5f6d.

[132] Engineering Optically Active Defects in Hexagonal Boron Nitride Using Focused Ion Beam and Water

E. GlushkovM. MachaE. RaethV. NavikasN. Ronceray  et al.

Acs Nano. 2022-03-22. DOI : 10.1021/acsnano.1c07086.

[131] High Performance Semiconducting Nanosheets via a Scalable Powder-Based Electrochemical Exfoliation Technique

R. A. WellsM. ZhangT.-H. ChenV. BoureauM. Caretti  et al.

Acs Nano. 2022-03-15. DOI : 10.1021/acsnano.1c10739.

[130] Statistical distortion of supervised learning predictions in optical microscopy induced by image compression

E. PomaricoC. SchmidtF. ChaysD. NguyenA. Planchette  et al.

Scientific Reports. 2022-03-02. DOI : 10.1038/s41598-022-07445-4.

[129] Zero-Bias Power-Detector Circuits based on MoS<sub>2</sub> Field-Effect Transistors on Wafer-Scale Flexible Substrates

E. ReatoP. PalaciosB. UzluM. SaeedA. Grundmann  et al.

Advanced Materials. 2022-02-17. DOI : 10.1002/adma.202108469.

[128] Low-Power Artificial Neural Network Perceptron Based on Monolayer MoS2

G. Migliato MaregaZ. WangM. PaliyG. GiusiS. Strangio  et al.

ACS Nano. 2022-02-16. DOI : 10.1021/acsnano.1c07065.

[127] Bacterial nanopores open the future of data storage

C. CaoL. F. KrappA. AgerovaA. Al OuahabiA. Radenovic  et al.

2022-01-01. International Electron Devices Meeting (IEDM), San Francisco, CA, Dec 03-07, 2022. DOI : 10.1109/IEDM45625.2022.10019421.

[126] Flat-Band-Induced Many-Body Interactions and Exciton Complexes in a Layered Semiconductor

Z. WangC.-Y. CheonM. TripathiG. M. MaregaY. Zhao  et al.

Nano Letters. 2022-11-08. DOI : 10.1021/acs.nanolett.2c02965.

2021

[125] Time-Resolved Scanning Ion Conductance Microscopy for Three-Dimensional Tracking of Nanoscale Cell Surface Dynamics

S. M. LeitaoB. DrakeK. PinjusicX. PierratV. Navikas  et al.

Acs Nano. 2021-11-23. DOI : 10.1021/acsnano.1c05202.

[124] Rhesus Blood Typing within a Few Seconds by Packing-Enhanced Nanoscattering on Individual Erythrocytes

-S. ChenS. J. DavisM.-L. ChangC.-H. HungA. Radenovic  et al.

Analytical Chemistry. 2021-11-16. DOI : 10.1021/acs.analchem.1c03590.

[123] Superconducting 2D NbS2 Grown Epitaxially by Chemical Vapor Deposition

Z. WangC.-Y. CheonM. TripathiG. M. MaregaY. Zhao  et al.

ACS Nano. 2021-11-10. DOI : 10.1021/acsnano.1c07956.

[122] Anomalous interfacial dynamics of single proton charges in binary aqueous solutions

J. ComtetA. RayabharamE. GlushkovM. ZhangA. Avsar  et al.

Science Advances. 2021-10-01. DOI : 10.1126/sciadv.abg8568.

[121] Bio-orthogonal Red and Far-Red Fluorogenic Probes for Wash-Free Live-Cell and Super-resolution Microscopy

P. WertherK. YserentantF. BraunK. GrussmayerV. Navikas  et al.

Acs Central Science. 2021-09-22. DOI : 10.1021/acscentsci.1c00703.

[120] Experimental Combination of Super-Resolution Optical Fluctuation Imaging with Structured Illumination Microscopy for Large Fields-of-View

A. C. DesclouxK. S. GrussmayerV. NavikasD. MahecicS. Manley  et al.

Acs Photonics. 2021-08-18. DOI : 10.1021/acsphotonics.1c00668.

[119] Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy

V. NavikasS. Mendes LeitãoK. S. GrussmayerA. C. DesclouxB. F. Drake  et al.

Nature Communications. 2021-07-27. DOI : 10.1038/s41467-021-24901-3.

[118] Direct Growth of Hexagonal Boron Nitride on Photonic Chips for High-Throughput Characterization

E. GlushkovN. MendelsonA. ChernevR. RitikaM. Lihter  et al.

Acs Photonics. 2021-07-21. DOI : 10.1021/acsphotonics.1c00165.

[117] Adaptive optics enables multimode 3D super-resolution microscopy via remote focusing

V. NavikasA. C. DesclouxK. S. GrussmayerS. MarionA. Radenovic

Nanophotonics. 2021-06-10. DOI : 10.1515/nanoph-2021-0108.

[116] High resolution optical projection tomography platform for multispectral imaging of the mouse gut

C. SchmidtA. L. PlanchetteD. NguyenG. GiardinaY. Neuenschwander  et al.

Biomedical Optics Express. 2021-06-01. DOI : 10.1364/BOE.423284.

[115] Parameter-free rendering of single-molecule localization microscopy data for parameter-free resolution estimation

A. C. DesclouxK. S. GrussmayerA. Radenovic

Communications Biology. 2021-05-11. DOI : 10.1038/s42003-021-02086-1.

[114] From Water Solutions to Ionic Liquids with Solid State Nanopores as a Perspective to Study Transport and Translocation Phenomena

S. MarionN. Vucemilovic-AlagicM. SpadinaA. RadenovicA.-S. Smith

Small. 2021-05-06. DOI : 10.1002/smll.202100777.

[113] Super-resolved Optical Mapping of Reactive Sulfur-Vacancies in Two-Dimensional Transition Metal Dichalcogenides

M. ZhangM. LihterT.-H. ChenM. MachaA. Rayabharam  et al.

Acs Nano. 2021-04-27. DOI : 10.1021/acsnano.1c00373.

[112] Wetting of nanopores probed with pressure

S. MarionM. MachaS. J. DavisA. ChernevA. Radenovic

Physical Chemistry Chemical Physics. 2021-02-28. DOI : 10.1039/d1cp00253h.

[111] Electrochemical Functionalization of Selectively Addressed MoS2 Nanoribbons for Sensor Device Fabrication

M. LihterM. GrafD. IvekovicM. ZhangT.-H. Shen  et al.

Acs Applied Nano Materials. 2021-02-26. DOI : 10.1021/acsanm.0c02628.

[110] Decoding Digital Information Stored in Polymer by Nanopore

C. CaoL. KrappA. OuahabiA. RadenovicJ.-F. Lutz  et al.

2021-02-12. p. 98A-98A. DOI : 10.1016/j.bpj.2020.11.802.

2020

[109] Aerolysin nanopores decode digital information stored in tailored macromolecular analytes

C. CaoL. F. KrappA. Al OuahabiN. F. KönigN. Cirauqui  et al.

Science Advances. 2020-12-09. DOI : 10.1126/sciadv.abc2661.

[108] Recent Advances and Prospects in the Research of Nascent Adhesions

B. H. StumpfA. Ambriovic-RistovA. RadenovicA.-S. Smith

Frontiers In Physiology. 2020-12-04. DOI : 10.3389/fphys.2020.574371.

[107] Prospects of Observing Ionic Coulomb Blockade in Artificial Ion Confinements

A. ChernevS. MarionA. Radenovic

Entropy. 2020-12-01. DOI : 10.3390/e22121430.

[106] Pressure-Induced Enlargement and Ionic Current Rectification in Symmetric Nanopores

S. J. DavisM. MachaA. ChernevD. M. HuangA. Radenovic  et al.

Nano Letters. 2020-11-11. DOI : 10.1021/acs.nanolett.0c03083.

[105] Microscopic Detection Analysis of Single Molecules in MoS2 Membrane Nanopores

M. XiongM. GrafN. AthreyaA. RadenovicJ.-P. Leburton

ACS Nano. 2020-11-06. DOI : 10.1021/acsnano.0c08382.

[104] Logic-in-memory based on an atomically thin semiconductor

G. Migliato MaregaY. ZhaoA. AvsarZ. WangM. Tripathi  et al.

Nature. 2020-11-05. DOI : 10.1038/s41586-020-2861-0.

[103] Towards artificial mechanosensing

S. MarionA. Radenovic

Nature Materials. 2020-10-01. DOI : 10.1038/s41563-020-00811-5.

[102] Self-Blinking Dyes Unlock High-Order and Multiplane Super-Resolution Optical Fluctuation Imaging

K. GrussmayerT. LukesT. LasserA. Radenovic

Acs Nano. 2020-07-28. DOI : 10.1021/acsnano.0c04602.

[101] Polymer Coatings to Minimize Protein Adsorption in Solid-State Nanopores

S. AwasthiP. SriboonpengC. YingJ. HoughtalingI. Shorubalko  et al.

Small Methods. 2020-07-16. DOI : 10.1002/smtd.202000177.

[100] High-Throughput Nanocapillary Filling Enabled by Microwave Radiation for Scanning Ion Conductance Microscopy Imaging

V. NavikasS. M. LeitãoS. MarionS. J. DavisB. Drake  et al.

ACS Applied Nano Materials. 2020-07-02. DOI : 10.1021/acsanm.0c01345.

[99] Spectral cross-cumulants for multicolor super-resolved SOFI imaging

K. S. GrussmayerS. GeissbuehlerA. DesclouxT. LukesM. Leutenegger  et al.

Nature Communications. 2020-06-15. DOI : 10.1038/s41467-020-16841-1.

[98] Direct observation of water-mediated single-proton transport between hBN surface defects

J. ComtetB. GrosjeanE. GlushkovA. AvsarK. Watanabe  et al.

Nature Nanotechnology. 2020-05-25. DOI : 10.1038/s41565-020-0695-4.

[97] Wafer-Scale Fabrication of Nanopore Devices for Single-Molecule DNA Biosensing using MoS2

M. ThakurM. MachaA. ChernevM. GrafM. Lihter  et al.

Small Methods. 2020-05-11. DOI : 10.1002/smtd.202000072.

[96] Nanocapillary confinement of imidazolium based ionic liquids

S. MarionS. J. DavisZ.-Q. WuA. Radenovic

Nanoscale. 2020-04-28. DOI : 10.1039/d0nr01164a.

[95] High-speed multiplane structured illumination microscopy of living cells using an image-splitting prism

A. DesclouxM. MuellerV. NavikasA. MarkwirthR. Van den Eynde  et al.

Nanophotonics. 2020-01-01. DOI : 10.1515/nanoph-2019-0346.

2019

[94] Nanoscale Selective Passivation of Electrodes Contacting a 2D Semiconductor

M. LihterM. GrafD. IvekovicA. Radenovic

Advanced Functional Materials. 2019-12-11. DOI : 10.1002/adfm.201907860.

[93] Waveguide-Based Platform for Large-FOV Imaging of Optically Active Defects in 2D Materials

E. GlushkovA. ArchettiA. StroganovJ. ComtetM. Thakur  et al.

Acs Photonics. 2019-12-01. DOI : 10.1021/acsphotonics.9b01103.

[92] Transverse Detection of DNA Using a MoS2 Nanopore

M. GrafM. LihterD. AltusS. MarionA. Radenovic

Nano Letters. 2019-12-01. DOI : 10.1021/acs.nanolett.9b04180.

[91] Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores

C. CaoN. CirauquiM. J. MarcaidaE. BuglakovaA. Duperrex  et al.

Nature Communications. 2019-10-29. DOI : 10.1038/s41467-019-12690-9.

[90] Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2

H. CunM. MachaH. KimK. LiuY. Zhao  et al.

Nano Research. 2019-10-01. DOI : 10.1007/s12274-019-2502-9.

[89] 2D MoS2 nanopores: ionic current blockade height for clustering DNA events

A. D. CarralC. S. SarapK. LiuA. RadenovicM. Fyta

2D Materials. 2019-10-01. DOI : 10.1088/2053-1583/ab2c38.

[88] 2D materials as an emerging platform for nanopore-based power generation

M. MachaS. MarionV. V. R. NandiganaA. Radenovic

Nature Reviews Materials. 2019-09-01. DOI : 10.1038/s41578-019-0126-z.

[87] Parameter-free image resolution estimation based on decorrelation analysis

A. C. DesclouxK. S. GrussmayerA. Radenovic

Nature Methods. 2019-08-26. DOI : 10.1038/s41592-019-0515-7.

[86] Facile Production of Hexagonal Boron Nitride Nanoparticles by Cryogenic Exfoliation

Ngoc My Hanh DuongE. GlushkovA. ChernevV. NavikasJ. Comtet  et al.

Nano Letters. 2019-08-01. DOI : 10.1021/acs.nanolett.9b01913.

[85] Light-Enhanced Blue Energy Generation Using MoS2 Nanopores

M. GrafM. LihterD. UnuchekA. SarathyJ.-P. Leburton  et al.

Joule. 2019-06-19. DOI : 10.1016/j.joule.2019.04.011.

[84] Supervised learning to quantify amyloidosis in whole brains of an Alzheimer's disease mouse model acquired with optical projection tomography

D. NguyenV. UhlmannA. L. PlanchetteP. J. MarchandD. Van de Ville  et al.

Biomedical Optics Express. 2019-06-01. DOI : 10.1364/BOE.10.003041.

[83] Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging

A. ArchettiE. GlushkovC. SiebenlA. StroganovA. Radenovic  et al.

Nature Communications. 2019-03-20. DOI : 10.1038/s41467-019-09247-1.

[82] Wide-Field Spectral Super-Resolution Mapping of Optically Active Defects in Hexagonal Boron Nitride

J. ComtetE. GlushkovV. NavikasJ. FengV. Babenko  et al.

Nano Letters. 2019-03-13. DOI : 10.1021/acs.nanolett.9b00178.

[81] Spatiotemporal Imaging of Water in Operating Voltage-Gated Ion Channels Reveals the Slow Motion of Interfacial Ions

O. B. TarunM. Y. EremchevA. RadenovicS. Roke

Nano Letters. 2019-10-03. DOI : 10.1021/acs.nanolett.9b02024.

[80] Identifying microbial species by single-molecule DNA optical mapping and resampling statistics

A. BouwensJ. DeenR. VitaleL. D’HuysV. Goyvaerts  et al.

NAR Genomics and Bioinformatics. 2019-10-05. DOI : 10.1093/nargab/lqz007.

[79] Fluorescent Nanodiamonds as Versatile Intracellular Temperature Sensors

E. GlushkovV. NavikasA. Radenovic

CHIMIA International Journal for Chemistry. 2019-02-01. DOI : 10.2533/chimia.2019.73.

[78] Fabrication and practical applications of molybdenum disulfide nanopores

M. GrafM. LihterM. ThakurV. GeorgiouJ. Topolancik  et al.

Nature Protocols. 2019-03-22. DOI : 10.1038/s41596-019-0131-0.

[77] Detecting topological variations of DNA at single-molecule level

K. LiuC. PanA. KühnA. P. NievergeltG. Fantner  et al.

Nature Communications. 2019. DOI : 10.1038/s41467-018-07924-1.

2018

[76] Transverse Detection of DNA in a MoS2 Nanopore

M. GrafK. LiuA. SarathyJ.-P. LeburtonA. Radenovic

Biophysical Journal. 2018. DOI : 10.1016/j.bpj.2017.11.1005.

[75] Single step synthesis of Schottky-like hybrid graphene - titania interfaces for efficient photocatalysis

Z. YiA. MerendaL. KongA. RadenovicM. Majumder  et al.

Scientific Reports. 2018-05-25. DOI : 10.1038/s41598-018-26447-9.

[74] Orthogonal Tip-to-Tip Nanocapillary Alignment Allows for Easy Detection of Fluorescent Emitters in Femtomolar Concentrations

P.-L. ChangM. GrafC.-H. HungA. Radenovic

Nano Letters. 2018-04-04. DOI : 10.1021/acs.nanolett.8b00831.

[73] Imaging of Optically Active Defects with Nanometer Resolution

J. FengH. DeschoutS. CanevaS. HofmannI. Lončarić  et al.

Nano Letters. 2018-02-02. DOI : 10.1021/acs.nanolett.7b04819.

[72] Centimeter-Sized Single-Orientation Monolayer Hexagonal Boron Nitride With or Without Nanovoids

H. CunA. HemmiE. MiniussiC. BernardB. Probst  et al.

Nano Letters. 2018-01-09. DOI : 10.1021/acs.nanolett.7b04752.

2017

[71] Investigating Focal Adhesion Substructures by Localization Microscopy

H. DeschoutI. PlatzmanD. SageL. FelettiJ. P. Spatz  et al.

Biophysical Journal. 2017. DOI : 10.1016/j.bpj.2017.09.032.

[70] Combining PALM and SOFI for quantitative imaging of focal adhesions in living cells

H. DeschoutT. LukesA. SharipovL. FelettiT. Lasser  et al.

2017. SPIE Photonics West, San Francisco, 27 January-2 February 2017. DOI : 10.1117/12.2252865.

[69] Geometrical Effect in 2D Nanopores

K. LiuM. LihterA. SarathyS. CanevaH. Qiu  et al.

Nano Letters. 2017. DOI : 10.1021/acs.nanolett.7b01091.

2016

[68] Fluorescent Nanodiamonds in Biological and Biomedical Imaging and Sensing

M. KayciF. MorA. Radenovic

Super-Resolution Imaging in Biomedicine; Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016.

[67] Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions

H. DeschoutT. LukesA. SharipovD. SzlagL. Feletti  et al.

Nature Communications. 2016. DOI : 10.1038/ncomms13693.

[66] Single Molecule Localization and Discrimination of DNA–Protein Complexes by Controlled Translocation Through Nanocapillaries

R. D. BulushevS. MarionE. PetrovaS. J. DavisS. J. Maerkl  et al.

Nano Letters. 2016. DOI : 10.1021/acs.nanolett.6b04165.

[65] On characterizing protein spatial clusters with correlation approaches

A. ShivanandanJ. UnnikrishnanA. Radenovic

Scientific Reports. 2016. DOI : 10.1038/srep31164.

[64] Single-layer MoS2 nanopores as nanopower generators

J. FengM. GrafK. LiuD. OvchinnikovD. Dumcenco  et al.

Nature. 2016. DOI : 10.1038/nature18593.

[63] Observation of ionic Coulomb blockade in nanopores

J. FengK. LiuM. GrafD. DumcencoA. Kis  et al.

Nature Materials. 2016. DOI : 10.1038/nmat4607.

2015

[62] Molybdenum Disulfide Nanopores: Why 3 Atoms are Better than One?

A. Radenovic

2015. 59th Annual Meeting of the Biophysical-Society, Baltimore, MD, FEB 07-11, 2015. p. 489A-489A. DOI : 10.1016/j.bpj.2014.11.2677.

[61] Investigating Cellular Focal Adhesions on Nano-Patterned Substrates with Dual Color Photo-Activated Localization Microscopy

H. G. DeschoutM. A. BairdM. W. DavidsonJ. P. SpatzA. Radenovic

2015. 59th Annual Meeting of the Biophysical-Society, Baltimore, MD, FEB 07-11, 2015. p. 359A-359A. DOI : 10.1016/j.bpj.2014.11.1971.

[60] Single florescent nanodiamond in a three dimensional ABEL trap

M. KayciA. Radenovic

Scientific Reports. 2015. DOI : 10.1038/srep16669.

[59] Revealing GPCR oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function

M. ScarselliP. AnnibaleP. J. MccormickS. KolachalamS. Aringhieri  et al.

FEBS Journal. 2015. DOI : 10.1111/febs.13577.

[58] Large-area MoS2 grown using H2S as the sulphur source

D. DumcencoD. OvchinnikovO. Lopez SanchezP. GilletD. T. L. Alexander  et al.

2D Materials. 2015. DOI : 10.1088/2053-1583/2/4/044005.

[57] Relevance of the Drag Force during Controlled Translocation of a DNA–Protein Complex through a Glass Nanocapillary

R. D. BulushevS. MarionA. Radenovic

Nano Letters. 2015. DOI : 10.1021/acs.nanolett.5b03264.

[56] Identification of single nucleotides in MoS2 nanopores

J. FengK. LiuR. D. BulushevS. KhlybovD. Dumcenco  et al.

Nature Nanotechnology. 2015. DOI : 10.1038/nnano.2015.219.

[55] Preface for a special issue of Microelectronic Engineering Micro/Nano Biotechnologies & Systems 2014

E. DelamarcheA. Radenovic

2015. p. vi-vii. DOI : 10.1016/S0167-9317(15)00341-X.

[54] High-Resolution Correlative Microscopy: Bridging the Gap between Single Molecule Localization Microscopy and Atomic Force Microscopy

P. D. OdermattA. ShivanandanH. DeschoutR. JankeleA. P. Nievergelt  et al.

Nano Letters. 2015. DOI : 10.1021/acs.nanolett.5b00572.

[53] Electrochemical Reaction in Single Layer MoS2: nanopores opened atom by atom

J. FengK. LiuM. GrafM. LihterR. D. Bulushev  et al.

Nano Letters. 2015. DOI : 10.1021/acs.nanolett.5b00768.

[52] Large-Area Epitaxial Monolayer MoS2

D. DumcencoD. OvchinnikovK. MarinovP. LazićM. Gibertini  et al.

ACS Nano. 2015. DOI : 10.1021/acsnano.5b01281.

[51] Accounting for Limited Detection Efficiency and Localization Precision in Cluster Analysis in Single Molecule Localization Microscopy

A. ShivanandanJ. UnnikrishnanA. Radenovic

PLOS ONE. 2015. DOI : 10.1371/journal.pone.0118767.

[50] The emergence of nanopores in next-generation sequencing

L. J. SteinbockA. Radenovic

Nanotechnology. 2015. DOI : 10.1088/0957-4484/26/7/074003.

2014

[49] Measurement of the Position-Dependent Electrophoretic Force on DNA in a Glass Nanocapillary

R. D. BulushevL. J. SteinbockS. KhlybovJ. F. SteinbockU. F. Keyser  et al.

Nano Letters. 2014. DOI : 10.1021/nl503272r.

[48] High throughput second harmonic imaging for label-free biological applications

C. Macias-RomeroM. E. P. DidierP. JourdainP. MarquetP. Magistretti  et al.

Optics Express. 2014. DOI : 10.1364/OE.22.031102.

[47] Probing the size of proteins with glass nanopores

L. J. SteinbockS. KrishnanR. D. BulushevS. BorgeaudM. Blokesch  et al.

Nanoscale. 2014. DOI : 10.1039/C4NR05001K.

[46] Electron Spin Resonance of Nitrogen-Vacancy Defects Embedded in Single Nanodiamonds in an ABEL Trap

M. KayciH.-C. ChangA. Radenovic

Nano Letters. 2014. DOI : 10.1021/nl5023964.

[45] Shrinking Nanocapillaries to Low Noise Nanopores for Single Molecule Detection

L. J. SteinbockS. KrishnanR. BulushevA. Radenovic

2014. 58th Annual Meeting of the Biophysical-Society, San Francisco, CA, FEB 15-19, 2014. p. 633A-633A. DOI : 10.1016/j.bpj.2013.11.3499.

[44] Combination of Optical Tweezers with Nanocapillaries as System for Estimation of DNA/Ligand Interactions

R. BulushevL. SteinbockA. Radenovic

2014. 58th Annual Meeting of the Biophysical-Society, San Francisco, CA, FEB 15-19, 2014. p. 393A-393A. DOI : 10.1016/j.bpj.2013.11.2221.

[43] Challenges in quantitative single molecule localization microscopy

A. ShivanandanH. DeschoutM. ScarselliA. Radenovic

FEBS Letters. 2014. DOI : 10.1016/j.febslet.2014.06.014.

[42] Progress in quantitative single-molecule localization microscopy

H. DeschoutA. ShivanandanP. AnnibaleM. ScarselliA. Radenovic

Histochemistry and Cell Biology. 2014. DOI : 10.1007/s00418-014-1217-y.

[41] Probing Rotational and Translational Diffusion of Nanodoublers in Living Cells on Microsecond Time Scales

C. Macias-RomeroM. E. P. DidierV. ZubkovsL. DelannoyF. Dutto  et al.

Nano Letters. 2014. DOI : 10.1021/nl500356u.

[40] Atomically Thin Molybdenum Disulfide Nanopores with High Sensitivity for DNA Translocation

K. LiuJ. FengA. KisA. Radenovic

ACS Nano. 2014. DOI : 10.1021/nn406102h.

[39] Light Generation and Harvesting in a van der Waals Heterostructure

O. Lopez-SanchezE. Alarcon LladoV. KomanA. Fontcuberta I. MorralA. Radenovic  et al.

ACS Nano. 2014. DOI : 10.1021/nn500480u.

[38] Nanopore Integrated Nanogaps for DNA Detection

A. FangetF. TraversiS. KhlybovP. GranjonA. Magrez  et al.

Nano Letters. 2014. DOI : 10.1021/nl403849g.

[37] ComEA Is Essential for the Transfer of External DNA into the Periplasm in Naturally Transformable Vibrio cholerae Cells

P. SeitzH. Pezeshgi ModarresS. BorgeaudR. D. BulushevL. J. Steinbock  et al.

PLoS Genetics. 2014. DOI : 10.1371/journal.pgen.1004066.

2013

[36] Detection of RNAP-DNA complexes using solid state nanopores

C. RaillonP. GranjonM. GrafA. Radenovic

2013. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3-7 07 2013. p. 4106-4109. DOI : 10.1109/EMBC.2013.6610448.

[35] DNA Trans location through Low-Noise Glass Nanopores

L. J. SteinbockR. D. BulushevS. KrishnanC. RaillonA. Radenovic

Acs Nano. 2013. DOI : 10.1021/nn405029j.

[34] MosaicIA: an ImageJ/Fiji plugin for spatial pattern and interaction analysis

A. ShivanandanA. RadenovicI. F. Sbalzarini

Bmc Bioinformatics. 2013. DOI : 10.1186/1471-2105-14-349.

[33] Enhancement of Second Harmonic Signal in Nanofabricated Cones

F. DuttoM. HeissA. LoveraO. Lopez-SanchezA. Fontcuberta i Morral  et al.

Nano Letters. 2013. DOI : 10.1021/nl403279y.

[32] Detecting the translocation of DNA through a nanopore using graphene nanoribbons

F. TraversiC. RaillonS. M. BenameurK. LiuS. Khlybov  et al.

Nature Nanotechnology. 2013. DOI : 10.1038/Nnano.2013.240.

[31] Controllable Shrinking and Shaping of Glass Nanocapillaries under Electron Irradiation

L. J. SteinbockJ. F. SteinbockA. Radenovic

Nano Letters. 2013. DOI : 10.1021/nl400304y.

[30] Enlightening G-protein-coupled receptors on the plasma membrane using super-resolution photoactivated localization microscopy

M. ScarselliP. AnnibaleC. GeraceA. Radenovic

Biochemical Society Transactions. 2013. DOI : 10.1042/Bst20120250.

[29] Ultrasensitive photodetectors based on monolayer MoS2

O. Lopez-SanchezD. LembkeM. KayciA. RadenovicA. Kis

Nature Nanotechnology. 2013. DOI : 10.1038/nnano.2013.100.

2012

[28] Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy

P. AnnibaleM. ScarselliM. GrecoA. Radenovic

Optical Nanoscopy. 2012. DOI : 10.1186/2192-2853-1-9.

[27] Alkaline niobate nanowires as opto-mechanical probes

F. DuttoA. Radenovic

2012. Conference on Optical Trapping and Optical Micromanipulation IX. DOI : 10.1117/12.929466.

[26] Fast and automatic processing of multi-level events in nanopore translocation experiments

C. RaillonP. GranjonM. GrafL. J. SteinbockA. Radenovic

Nanoscale. 2012. DOI : 10.1039/c2nr30951c.

[25] Cell-type-specific  2 adrenergic receptor clusters identified using photo-activated localization microscopy are not lipid raft related, but depend on actin cytoskeleton integrity

M. ScarselliP. AnnibaleA. Radenovic

Journal of Biological Chemistry. 2012. DOI : 10.1074/jbc.M111.329912.

[24] Nanopore Detection of Single Molecule RNAP–DNA Transcription Complex

C. RaillonP. CousinF. TraversiE. Garcia-CorderoN. Hernandez  et al.

Nano Letters. 2012. DOI : 10.1021/nl3002827.

[23] Micro-fabrication process for small transport devices of layered manganite

A. Alahgholipour OmraniG. DengA. RadenovicA. KisH. Rønnow

2012. THE 56TH ANNUAL CONFERENCE ON MAGNETISM AND MAGNETIC MATERIALS, Phoenix, Arizona, USA, October, 30- November 3, 2011. DOI : 10.1063/1.3675995.

2011

[22] Niobates Nanowires: Synthesis, Characterization and Applications

R. GrangeF. DuttoA. Radenovic

Nanowires - Implementations and Applications; In Tech, 2011. p. 509-524.

[21] Nonlinear Optical Response in Single Alkaline Niobate Nanowires

F. DuttoC. RaillonK. SchenkA. Radenovic

Nano Letters. 2011. DOI : 10.1021/nl201085b.

[20] Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking

P. AnnibaleS. VanniM. ScarselliU. RothlisbergerA. Radenovic

PLoS ONE. 2011. DOI : 10.1371/journal.pone.0022678.

[19] Identification of clustering artifacts in photoactivated localization microscopy

P. AnnibaleS. VanniM. ScarselliU. RöthlisbergerA. Radenovic

Nature Methods. 2011. DOI : 10.1038/nmeth.1627.

[18] Single-layer MoS2 transistors

B. RadisavljevicA. RadenovicJ. BrivioV. GiacomettiA. Kis

Nature Nanotechnology. 2011. DOI : 10.1038/nnano.2010.279.

2010

[17] ssDNA Binding Reveals the Atomic Structure of Graphene

B. S. HusaleS. SahooA. RadenovicF. TraversiP. Annibale  et al.

Langmuir. 2010. DOI : 10.1021/la102518t.

[16] Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes

J. MiklossyH. QingA. RadenovicA. KisB. Villeno  et al.

Neurobiology of Aging. 2010. DOI : 10.1016/j.neurobiolaging.2008.08.019.

[15] Photoactivatable Fluorescent Protein mEos2 Displays Repeated Photoactivation after a Long-Lived Dark State in the Red Photoconverted Form

P. AnnibaleM. ScarselliA. KodiyanA. Radenovic

The Journal of Physical Chemistry Letters. 2010. DOI : 10.1021/jz1003523.

2008

[14] Fabrication of 10 nm diameter hydrocarbon nanopores

A. RadenovicE. TrepagnierR. CsencsitsK. H. DowningJ. Liphardt

Applied Physics Letters. 2008. DOI : 10.1063/1.3012376.

2007

[13] Controlling DNA capture and propagation through artificial nanopores

E. H. TrepagnierA. RadenovicD. SivakP. GeisslerJ. Liphardt

Nano Letters. 2007. DOI : 10.1021/nl0714334.

[12] Electrophoretic threading kinetics of optically trapped DNA through synthetic nanopores

E. H. TrepagnierA. RadenovicJ. T. Liphardt

Biophysical Journal. 2007.

[11] Tunable nanowire nonlinear optical probe

Y. NakayamaP. J. PauzauskieA. RadenovicR. M. OnoratoR. J. Saykally  et al.

Nature. 2007. DOI : 10.1038/nature05921.

2006

[10] EFTEM Imaging of ZnO-TiO2 Core-Shell Nanowires and TiO2 Nanotubes

V. RadmilovicM. LawP. YangA. RadenovicC. Nelson

2006. p. 474. DOI : 10.1017/S1431927606069261.

[9] Optical trapping and integration of semiconductor nanowire assemblies in water

P. J. PauzauskieA. RadenovicE. TrepagnierH. ShroffP. D. Yang  et al.

Nature Materials. 2006. DOI : 10.1038/nmat1563.

[8] Beta-amyloid deposition and Alzheimer's type changes induced by Borrelia spirochetes

J. MiklossyA. KisA. RadenovicL. MillerL. Forro  et al.

Neurobiology of Aging. 2006. DOI : 10.1016/j.neurobiolaging.2005.01.018.

[7] ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells

M. LawL. E. GreeneA. RadenovicT. KuykendallJ. Liphardt  et al.

Journal of Physical Chemistry B. 2006. DOI : 10.1021/jp0648644.

[6] Study of DNA in "glasslike state" by atomic force microscopy: Importance of substrates

S. TobenasE. BystrenovaA. RadenovicG. Di SantoG. Dietler

Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers. 2006. DOI : 10.1143/JJAP.45.2345.

2004

[5] Complex characterization of physiology solution based magnetic fluid

M. TimkoM. KonerackaP. KopcanskyZ. TomoriL. Vekas  et al.

Indian Journal of Engineering and Materials Sciences. 2004.

2003

[4] Study of probes and substrates for low temperature atomic force microscopy and biological applications

A. RadenovicE. BystrenovaL. LibioulleG. Dietler

Acta Physica Polonica A. 2003. DOI : 10.12693/APhysPolA.104.373.

[3] A low-temperature ultrahigh vacuum atomic force microscope for biological applications

A. RadenovicE. BystrenovaL. LibioulleM. TaborelliJ. A. DeRose  et al.

Review of Scientific Instruments. 2003. DOI : 10.1063/1.1532840.

[2] Low noise current-to-voltage converter and vibration damping system for a low-temperature ultrahigh vacuum scanning tunneling microscope

L. LibioulleA. RadenovicE. BystrenovaG. Dietler

Review of Scientific Instruments. 2003. DOI : 10.1063/1.1533100.

[1] Characterization of atomic force microscope probes at low temperatures

A. RadenovicE. BystrenovaL. LibioulleF. ValleG. T. Shubeita  et al.

Journal of Applied Physics. 2003. DOI : 10.1063/1.1604952.

Teaching & PhD

PhD Students

Helena Miljkovic, Akhil Sai Naidu, Karl Rufus Pang Yeo, Wei Guo, Eveline Simone Mayner, Nianduo Cai, Marianna Mitsioni

Past EPFL PhD Students

Paolo Annibale, Camille Alice Raillon, Fabrizia Dutto, Arun Shivanandan, Metin Kayci, Jiandong Feng, Roman Bulushev, Michael Graf, Adrien Charles Descloux, Sebastian James Davis, Martina Lihter, Evgenii Glushkov, Vytautas Navikas, Arielle Louise Planchette, Michal Daniel Macha, Mukeshchand Thakur, Nathan Ronceray, Khalid Ibrahim, Yunfei Teng

Past EPFL PhD Students as codirector

Hossein Babashah, Simon Finn Mayer

Courses

Fundamentals of biophotonics

BIO-443

This module serves as an introduction to the area of biophotonics. The approach is multidisciplinary .The course is mainly knowledge-based but students will benefit from the skills learned by carrying out problem solving and by completing the assignment.

Seminar in physiology and instrumentation

MICRO-568

To get familiar with the state-of-the-art in medical and bio-instrumentation. To acquire basic understanding of related physiology associated to these instruments.