Felix Naef

Nationalité: swiss

EPFL SV IBI-SV UPNAE
AAB 2 48 (Bâtiment AAB)
Station 19
1015 Lausanne

Prix et distinctions

2012

2020

Cell-cycle inhibition preserves robust development but rebalances lineages in mouse gastruloids

M. LeonardiY. PaychèreF. Naef

2026

CoPhaser: generic modeling of biological cycles in scRNA-seq with context-dependent periodic manifolds

Y. PaychereA. SalatiC. GobetF. Naef

2025

Conditional Deep Learning Model Reveals Translation Elongation Determinants during Amino Acid Deprivation

M. V. NallapareddyF. CraigheroL. WorpenbergF. NaefC. Gobet  et al.

Communications Biology. 2025. DOI : 10.1038/s42003-025-09092-7.

Chrono-atlas of cell-type specific daily gene expression rhythms in the regenerating colon

V. C. AlcocerC. GobetJ. MacDonaldZ. TalebF. Naef  et al.

2025

Codon-specific ribosome stalling reshapes translational dynamics during branched-chain amino acid starvation

L. WorpenbergC. GobetF. Naef

Genome Biology. 2025. DOI : 10.1186/s13059-025-03800-6.

Daily liver rhythms: Coupling morphological and molecular oscillations

U. SchiblerF. SinturelF. NaefA. GerberD. Gatfield

Proceedings of the National Academy of Sciences. 2025. DOI : 10.1073/pnas.2517648122.

Single-mRNA imaging and modeling reveal coupled translation initiation and elongation rates

I. LambertiJ. A. ChaoC. GobetF. Naef

2025

Molecular Systems Biology at 20: reflecting on the past, envisioning the future

P. BhedaJ. HouR. AebersoldU. AlonJ. S. Bader  et al.

Molecular systems biology. 2025. DOI : 10.1038/s44320-025-00170-w.

Statistical inference with a manifold-constrained RNA velocity model uncovers cell cycle speed modulations

A. R. LedererM. LeonardiL. TalamancaD. M. BobrovskiyA. Herrera  et al.

Nature methods. 2024. DOI : 10.1038/s41592-024-02471-8.

The metabolic and circadian signatures of gestational diabetes in the postpartum period characterised using multiple wearable devices

N. E. PhillipsJ. MareschalA. D. BiancolinF. SinturelS. Umwali  et al.

Diabetologia. 2024. DOI : 10.1007/s00125-024-06318-x.

Towards improving full-length ribosome density prediction by bridging sequence and graph-based representations

M. V. NallapareddyF. CraigheroF. NaefC. GobetP. Vandergheynst

2024. 19th Machine Learning in Computational Biology meeting, Seattle, WA, USA, 2024-09-05 - 2024-09-06.

Characterisation of EIF5A perturbations on ribosome dynamics with single-molecule imaging

I. Lamberti / F. Naef (Dir.)

Lausanne, EPFL, 2024. DOI : 10.5075/epfl-thesis-10511.

Uncovering personalized glucose responses and circadian rhythms from multiple wearable biosensors with Bayesian dynamical modeling

N. E. PhillipsT.-H. ColletF. Naef

Cell Reports Methods. 2023. DOI : 10.1016/j.crmeth.2023.100545.

Sex-dimorphic and age-dependent organization of 24-hour gene expression rhythms in humans

L. TalamancaC. GobetF. Naef

Science. 2023. DOI : 10.1126/science.add0846.

Spatiotemporal Metabolic Liver Zonation and Consequences on Pathophysiology

T. MartiniF. NaefJ. S. Tchorz

Annual Review Of Pathology-Mechanisms Of Disease. 2023. DOI : 10.1146/annurev-pathmechdis-031521-024831.

Statistical physics of periodic biological processes

L. Talamanca / F. NaefP. De Los Rios (Dir.)

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-9772.

V-ATPase/TORC1-mediated ATFS-1 translation directs mitochondrial UPR activation in C. elegans

T. Y. LiA. W. GaoX. LiH. LiY. J. Liu  et al.

Journal of Cell Biology (JCB). 2022. DOI : 10.1083/jcb.202205045.

Comprehensive analysis of the circadian nuclear and cytoplasmic transcriptome in mouse liver

C. S. HurniB. WegerC. S. GobetF. Naef

Plos Genetics. 2022. DOI : 10.1371/journal.pgen.1009903.

Ribo-DT: An automated pipeline for inferring codon dwell times from ribosome profiling data

C. GobetF. Naef

Methods. 2022. DOI : 10.1016/j.ymeth.2021.10.004.

Comment on "Circadian rhythms in the absence of the clock gene Bmal1"

K. C. AbruzziC. GobetF. NaefM. Rosbash

Science. 2021. DOI : 10.1126/science.abf0922.

The Effects of Time-Restricted Eating versus Standard Dietary Advice on Weight, Metabolic Health and the Consumption of Processed Food: A Pragmatic Randomised Controlled Trial in Community-Based Adults

N. E. PhillipsJ. MareschalN. SchwabE. N. C. ManoogianS. Borloz  et al.

Nutrients. 2021. DOI : 10.3390/nu13031042.

The circadian oscillator analysed at the single-transcript level

N. E. PhillipsA. HuguesJ. YeungE. DurandauD. Nicolas  et al.

Molecular Systems Biology. 2021. DOI : 10.15252/msb.202010135.

Oscillating and stable genome topologies underlie hepatic physiological rhythms during the circadian cycle

J. MermetJ. YeungF. Naef

PLOS Genetics. 2021. DOI : 10.1371/journal.pgen.1009350.

Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms

B. D. WegerC. GobetF. P. A. DavidF. AtgerE. Martin  et al.

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2021. DOI : 10.1073/pnas.2015803118.

Space-time logic of liver gene expression at sub-lobular scale

C. DroinJ. El KholteiK. B. HalpernC. HurniM. Rozenberg  et al.

Nature Metabolism. 2021. DOI : 10.1038/s42255-020-00323-1.

Circadian dynamics of RNA localisation in the mammalian liver

C. Y. S. Hurni / F. Naef (Dir.)

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-8104.

What determines eukaryotic translation elongation: recent molecular and quantitative analyses of protein synthesis

N. NeelagandanI. LambertiH. J. F. CarvalhoC. GobetF. Naef

Open Biology. 2020. DOI : 10.1098/rsob.200292.

Robust landscapes of ribosome dwell times and aminoacyl-tRNAs in response to nutrient stress in liver

C. GobetB. D. WegerJ. MarquisE. MartinN. Neelagandan  et al.

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2020. DOI : 10.1073/pnas.1918145117.

Inference methods for the study of interacting biological oscillators in single-cells

C. N. Droin / F. Naef (Dir.)

Lausanne, EPFL, 2020. DOI : 10.5075/epfl-thesis-8364.

Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex

C. N. HorJ. YeungM. JanY. EmmeneggerJ. Hubbard  et al.

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2019. DOI : 10.1073/pnas.1910590116.

Low-dimensional dynamics of two coupled biological oscillators

C. DroinE. R. PaquetF. Naef

Nature Physics. 2019. DOI : 10.1038/s41567-019-0598-1.

Organization of temporal gene expression: from circadian clocks to promoter cycles and back

F. Naef

2019. p. 49 - 49.

Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells

A. ManfrinY. TabataE. R. PaquetA. R. VuaridelF. R. Rivest  et al.

Nature Methods. 2019. DOI : 10.1038/s41592-019-0455-2.

Quantitative relationships between SMAD dynamics and target gene activation kinetics in single live cells

O. TidinE. T. FrimanF. NaefD. M. Suter

Scientific Reports. 2019. DOI : 10.1038/s41598-019-41870-2.

Differential regulation of RNA polymerase III genes during liver regeneration

M. YeganehV. PrazC. CarmeliD. VilleneuveL. Rib  et al.

Nucleic Acids Research. 2019. DOI : 10.1093/nar/gky1282.

The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism

B. D. WegerC. GobetJ. YeungE. MartinS. Jimenez  et al.

Cell Metabolism. 2019. DOI : 10.1016/j.cmet.2018.09.023.

Tissue-specific circadian transcriptional regulation

J. Yeung / F. Naef (Dir.)

Lausanne, EPFL, 2019. DOI : 10.5075/epfl-thesis-8893.

Rhythms of the Genome: Circadian Dynamics from Chromatin Topology, Tissue-Specific Gene Expression, to Behavior

J. YeungF. Naef

Trends In Genetics. 2018. DOI : 10.1016/j.tig.2018.09.005.

Cross-regulatory circuits linking inflammation, high-fat diet, and the circadian clock

F. GachonJ. YeungF. Naef

Genes & Development. 2018. DOI : 10.1101/gad.320911.118.

Single Live Cell Monitoring of Protein Turnover Reveals Intercellular Variability and Cell-Cycle Dependence of Degradation Rates

A. B. AlberE. R. PaquetM. BiserniF. NaefD. M. Suter

Molecular Cell. 2018. DOI : 10.1016/j.molcel.2018.07.023.

Long- and short-term molecular consequences of sleep loss in mice

C. N. HorJ. YeungM. JanY. EmmeneggerJ. Hubbard  et al.

2018. 24th Congress of the European-Sleep-Research-Society (ESRS), Basel, SWITZERLAND, Sep 25-28, 2018.

Quantitative single cell dynamics of signaling and transcriptional response in mammalian cells

O. Tidin / D. M. SuterF. Naef (Dir.)

Lausanne, EPFL, 2018. DOI : 10.5075/epfl-thesis-8629.

Circadian clock- and feeding-dependent regulation of translation initiation and elongation in the liver

C. A. Gobet / F. NaefK. Sakamoto (Dir.)

Lausanne, EPFL, 2018. DOI : 10.5075/epfl-thesis-8900.

Circadian and Feeding Rhythms Orchestrate the Diurnal Liver Acetylome

D. MauvoisinF. AtgerL. DayonA. N. GalindoJ. Wang  et al.

Cell Reports. 2017. DOI : 10.1016/j.celrep.2017.07.065.

Ribosome profiling and dynamic regulation of translation in mammals

C. GobetF. Naef

Current Opinion In Genetics & Development. 2017. DOI : 10.1016/j.gde.2017.03.005.

Systems Chronobiology: Global Analysis of Gene Regulation in a 24-Hour Periodic World

J. MermetJ. YeungF. Naef

Cold Spring Harbor Perspectives In Biology. 2017. DOI : 10.1101/cshperspect.a028720.

Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver

J. WangD. MauvoisinE. MartinF. AtgerA. N. Galindo  et al.

Cell Metabolism. 2017. DOI : 10.1016/j.cmet.2016.10.003.

Rhythmic and clock-dependent chromatin loops regulate circadian gene expression

J. Mermet / F. Naef (Dir.)

Lausanne, EPFL, 2017. DOI : 10.5075/epfl-thesis-7485.

A new promoter element associated with daily time keeping in Drosophila

B. SharpE. PaquetF. NaefA. BafnaH. Wijnen

Nucleic Acids Research. 2017. DOI : 10.1093/nar/gkx268.

What shapes eukaryotic transcriptional bursting?

D. NicolasN. E. PhillipsF. Naef

Molecular Biosystems. 2017. DOI : 10.1039/c7mb00154a.

Transcriptional regulatory logic of the diurnal cycle in the mouse liver

J. A. SobelI. KrierT. AndersinS. RaghavD. Canella  et al.

PLoS Biology. 2017. DOI : 10.1371/journal.pbio.2001069.

Rhythmic modulation of transcriptional burst frequency in circadian gene promoters

D. L. Nicolas / F. NaefD. M. Suter (Dir.)

Lausanne, EPFL, 2017. DOI : 10.5075/epfl-thesis-8016.

Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

I. GoticS. OmidiF. Fleury-OlelaN. MolinaF. Naef  et al.

Genes & Development. 2016. DOI : 10.1101/gad.287094.116.

Circadian rhythm and cell cycle : two synchronized processes

R. Cannavo / F. Naef (Dir.)

Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-6902.

Revealing Assembly of a Pore-Forming Complex Using Single-Cell Kinetic Analysis and Modeling

M. BischofbergerI. IacovacheD. BossF. NaefF. G. van der Goot  et al.

Biophysical Journal. 2016. DOI : 10.1016/j.bpj.2016.02.035.

Mechanisms of centrosome separation in C. elegans

A. De Simone / P. GönczyF. Naef (Dir.)

Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-6916.

Phase specific transcriptional regulation of circadian clock and metabolism in mouse liver

J. A. Sobel / F. Naef (Dir.)

Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-7188.

Structure of silent transcription intervals and noise characteristics of mammalian genes

B. ZollerD. L. NicolasN. MolinaF. Naef

Molecular Systems Biology. 2015. DOI : 10.15252/msb.20156257.

Quantitative single-cell analysis of S. cerevisiae using a microfluidic live-cell imaging platform

J. Becker / F. NaefS. Maerkl (Dir.)

Lausanne, EPFL, 2015. DOI : 10.5075/epfl-thesis-6519.

Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

F. AtgerC. GobetJ. MarquisE. MartinJ. Wang  et al.

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2015. DOI : 10.1073/pnas.1515308112.

Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters

M. QuinodozC. GobetF. NaefK. B. Gustafson

Genome Biology. 2014. DOI : 10.1186/gb-2014-15-6-r85.

Context-specific regulation of BMAL1 target genes during the circadian rhythm in mouse

J. C. Cajan / F. NaefB. Deplancke (Dir.)

Lausanne, EPFL, 2014. DOI : 10.5075/epfl-thesis-6308.

Spatio-temporal synchronization of biological oscillators

J. Bieler / F. Naef (Dir.)

Lausanne, EPFL, 2014. DOI : 10.5075/epfl-thesis-6319.

Non-Circadian Expression Masking Clock-Driven Weak Transcription Rhythms in U2OS Cells

J. HoffmannL. SymulA. ShostakT. FischerF. Naef  et al.

Plos One. 2014. DOI : 10.1371/journal.pone.0102238.

Modeling of transcription mechanisms in mammals from kinetic measurements in single cells

B. Zoller / F. Naef (Dir.)

Lausanne, EPFL, 2014. DOI : 10.5075/epfl-thesis-6414.

Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells

J. BielerR. CannavoK. GustafsonC. A. GobetG. David  et al.

Molecular Systems Biology. 2014. DOI : 10.15252/msb.20145218.

Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver

D. MauvoisinJ. WangC. JouffeE. MartinF. Atger  et al.

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2014. DOI : 10.1073/pnas.1314066111.

Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription

B. KnightS. KubikB. GhoshM. J. BruzzoneM. Geertz  et al.

Genes & Development. 2014. DOI : 10.1101/gad.244434.114.

Quantitative analysis and mathematical modeling of polarity establishment in C. elegans embryos

S. Blanchoud / P. GönczyF. Naef (Dir.)

Lausanne, EPFL, 2013. DOI : 10.5075/epfl-thesis-5863.

A chemostat array enables the spatio-temporal analysis of the yeast proteome

N. DénervaudJ. BeckerR. Delgado-GonzaloP. DamayA. S. Rajkumar  et al.

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2013. DOI : 10.1073/pnas.1308265110.

Analysis of precision in chemical oscillators: implications for circadian clocks

T. d'EysmondA. De SimoneF. Naef

Physical biology. 2013. DOI : 10.1088/1478-3975/10/5/056005.

A microfluidic live-cell imaging platform to study large collections of microbial genotypes

N. Dénervaud / S. MaerklF. Naef (Dir.)

Lausanne, EPFL, 2013. DOI : 10.5075/epfl-thesis-5593.

Stimulus-induced modulation of transcriptional bursting in a single mammalian gene

N. MolinaD. M. SuterR. CannavoB. ZollerI. Gotic  et al.

Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS). 2013. DOI : 10.1073/pnas.1312310110.

The Circadian Clock Coordinates Ribosome Biogenesis

C. JouffeG. CretenetL. SymulE. MartinF. Atger  et al.

Plos Biology. 2013. DOI : 10.1371/journal.pbio.1001455.

Kinetic Analysis of Transcriptional and Post-Transcriptional Processes During Circadian Cycles

L. Symul / F. Naef (Dir.)

Lausanne, EPFL, 2013. DOI : 10.5075/epfl-thesis-5911.

Absolute quantification of transcription factors during cellular differentiation using multiplexed targeted proteomics

J. SimicevicA. W. SchmidP. A. GilardoniB. ZollerS. K. Raghav  et al.

Nature methods. 2013. DOI : 10.1038/nmeth.2441.

Cold-Inducible RNA-Binding Protein Modulates Circadian Gene Expression Posttranscriptionally

J. MorfG. ReyK. SchneiderM. StratmannJ. Fujita  et al.

Science. 2012. DOI : 10.1126/science.1217726.

Genome-Wide RNA Polymerase II Profiles and RNA Accumulation Reveal Kinetics of Transcription and Associated Epigenetic Changes During Diurnal Cycles

G. Le MartelotD. CanellaL. SymulE. MigliavaccaF. Gilardi  et al.

Plos Biology. 2012. DOI : 10.1371/journal.pbio.1001442.

Circadian Dbp Transcription Relies on Highly Dynamic BMAL1-CLOCK Interaction with E Boxes and Requires the Proteasome

M. StratmannD. M. SuterN. MolinaF. NaefU. Schibler

Molecular Cell. 2012. DOI : 10.1016/j.molcel.2012.08.012.

Computational analysis of protein-DNA interactions from ChIP-seq data

J. RougemontF. Naef

Methods in molecular biology (Clifton, N.J.). 2011. DOI : 10.1007/978-1-61779-292-2_16.

Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver

G. ReyF. CesbronJ. RougemontH. ReinkeM. Brunner  et al.

PLoS biology. 2011. DOI : 10.1371/journal.pbio.1000595.

Mammalian genes are transcribed with widely different bursting kinetics

D. M. SuterN. MolinaD. GatfieldK. SchneiderU. Schibler  et al.

Science. 2011. DOI : 10.1126/science.1198817.

Origins and consequences of transcriptional discontinuity

D. M. SuterN. MolinaF. NaefU. Schibler

Current opinion in cell biology. 2011. DOI : 10.1016/j.ceb.2011.09.004.

Analysis of the dynamics of limb transcriptomes during mouse development

I. GyurjánB. SondereggerF. NaefD. Duboule

BMC developmental biology. 2011. DOI : 10.1186/1471-213X-11-47.

Whole-embryo modeling of early segmentation in Drosophila identifies robust and fragile expression domains

J. BielerC. PozzoriniF. Naef

Biophysical Journal. 2011. DOI : 10.1016/j.bpj.2011.05.060.

Stabilizing patterning in the Drosophila segment polarity network by selecting models in silico

G. StollM. BischofbergerJ. RougemontF. Naef

Bio Systems. 2010. DOI : 10.1016/j.biosystems.2010.07.014.

The telomere-binding protein Tbf1 demarcates snoRNA gene promoters in Saccharomyces cerevisiae

M. PretiC. RibeyreC. PascaliM. C. BosioB. Cortelazzi  et al.

Molecular cell. 2010. DOI : 10.1016/j.molcel.2010.04.016.

A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning

J.-D. BénazetM. BischofbergerE. TieckeA. GonçalvesJ. F. Martin  et al.

Science. 2009. DOI : 10.1126/science.1168755.

Relationship between estrogen receptor alpha location and gene induction reveals the importance of downstream sites and cofactors

F. ParisiB. SondereggerP. WirapatiM. DelorenziF. Naef

BMC genomics. 2009. DOI : 10.1186/1471-2164-10-381.

Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays

S. P. HazenF. NaefT. QuiselJ. M. GendronH. Chen  et al.

Genome biology. 2009. DOI : 10.1186/gb-2009-10-2-r17.

Circadian gene expression is resilient to large fluctuations in overall transcription rates

C. DibnerD. SageM. UnserC. BauerT. d'Eysmond  et al.

The EMBO journal. 2009. DOI : 10.1038/emboj.2008.262.

Stochastic phase oscillator models for circadian clocks

J. RougemontF. Naef

Cellular Oscillatory Mechanisms; Springer, 2008. p. 141 - 149.

Probabilistic base calling of Solexa sequencing data

J. RougemontA. AmzallagC. IseliL. FarinelliI. Xenarios  et al.

BMC bioinformatics. 2008. DOI : 10.1186/1471-2105-9-431.

Modeling an evolutionary conserved circadian cis-element

E. R. PaquetG. ReyF. Naef

PLoS Computational Biology. 2008. DOI : 10.1371/journal.pcbi.0040038.

Stochastic phase oscillators and circadian bioluminescence recordings

J. RougemontF. Naef

2007. 72nd Cold Spring Harbor Symposium on Quantitative Biology, Cold Spring Harbor, NY, May 30, 2007. p. 405 - 411.

Stochastic phase oscillators and circadian bioluminescence recordings

J. RougemontF. Naef

Cold Spring Harbor symposia on quantitative biology. 2007. DOI : 10.1101/sqb.2007.72.044.

Integration of light and temperature in the regulation of circadian gene expression in Drosophila

C. E. BoothroydH. WijnenF. NaefL. SaezM. W. Young

PLoS genetics. 2007. DOI : 10.1371/journal.pgen.0030054.

Identifying synergistic regulation involving c-Myc and sp1 in human tissues

F. ParisiP. WirapatiF. Naef

Nucleic Acids Research. 2007. DOI : 10.1093/nar/gkl1157.

Representing perturbed dynamics in biological network models

G. StollJ. RougemontF. Naef

Physical Review E. 2007. DOI : 10.1103/PhysRevE.76.011917.

Dynamical signatures of cellular fluctuations and oscillator stability in peripheral circadian clocks

J. RougemontF. Naef

Molecular systems biology. 2007. DOI : 10.1038/msb4100130.

Similarities and differences of polyadenylation signals in human and fly

D. RetelskaC. IseliP. BucherC. V. JongeneelF. Naef

BMC Genomics. 2006. DOI : 10.1186/1471-2164-7-176.

Control of daily transcript oscillations in Drosophila by light and the circadian clock

H. WijnenF. NaefC. BoothroydA. Claridge-ChangM. W. Young

PLoS genetics. 2006. DOI : 10.1371/journal.pgen.0020039.

In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis

D. A. LimM. Suárez-FariñasF. NaefC. R. HackerB. Menn  et al.

Molecular and cellular neurosciences. 2006. DOI : 10.1016/j.mcn.2005.10.005.

Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies

J. RougemontF. Naef

Physical Review E. 2006. DOI : 10.1103/PhysRevE.73.011104.

The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4

N. Ben-HaimC. LuM. Guzman-AyalaL. PescatoreD. Mesnard  et al.

Developmental Cell. 2006. DOI : 10.1016/j.devcel.2006.07.005.

Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria

F. Naef

Molecular systems biology. 2005. DOI : 10.1038/msb4100027.

Molecular and statistical tools for circadian transcript profiling

H. WijnenF. NaefM. W. Young

Circadian Rhythms; Elsevier, 2005. p. 341 - 365.

Cellular oscillators: rhythmic gene expression and metabolism

U. SchiblerF. Naef

Current opinion in cell biology. 2005. DOI : 10.1016/j.ceb.2005.01.007.

Cell-type-specific transcriptomics in chimeric models using transcriptome-based masks

F. NaefJ. Huelsken

Nucleic Acids Res. 2005. DOI : 10.1093/nar/gni104.

Freedom and rules: the acquisition and reprogramming of a bird's learned song

T. J. GardnerF. NaefF. Nottebohm

Science. 2005. DOI : 10.1126/science.1108214.

Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells

E. NagoshiC. SainiC. BauerT. LarocheF. Naef  et al.

Cell. 2004. DOI : 10.1016/j.cell.2004.11.015.

Solving the riddle of the bright mismatches: labeling and effective binding in oligonucleotide arrays

F. NaefM. O. Magnasco

Physical Review E. 2003. DOI : 10.1103/PhysRevE.68.011906.

Production of ribosome components in effector CD4+ T cells is accelerated by TCR stimulation and coordinated by ERK-MAPK

M. AsmalJ. ColganF. NaefB. YuY. Lee  et al.

Immunity. 2003. DOI : 10.1016/S1074-7613(03)00268-1.

Absolute mRNA concentrations from sequence-specific calibration of oligonucleotide arrays

D. HekstraA. R. TaussigM. MagnascoF. Naef

Nucleic Acids Research. 2003. DOI : 10.1093/nar/gkg283.

Molecular signature of human embryonic stem cells and its comparison with the mouse

N. SatoI. M. SanjuanM. HekeM. UchidaF. Naef  et al.

Developmental biology. 2003. DOI : 10.1016/S0012-1606(03)00256-2.

A study of accuracy and precision in oligonucleotide arrays: extracting more signal at large concentrations

F. NaefN. D. SocciM. Magnasco

Bioinformatics. 2003. DOI : 10.1093/bioinformatics/19.2.178.

DNA hybridization to mismatched templates: a chip study

F. NaefD. A. LimN. PatilM. Magnasco

Physical Review E. 2002. DOI : 10.1103/PhysRevE.65.040902.

Empirical characterization of the expression ratio noise structure in high-density oligonucleotide arrays

F. NaefC. R. HackerN. PatilM. Magnasco

Genome biology. 2002. DOI : 10.1186/gb-2002-3-4-research0018.

Circadian regulation of gene expression systems in the Drosophila head

A. Claridge-ChangH. WijnenF. NaefC. BoothroydN. Rajewsky  et al.

Neuron. 2001. DOI : 10.1016/S0896-6273(01)00515-3.

Dynamical properties of quasi one-dimensional correlated electrons

F. Naef / A. Baldereschi (Dir.)

Lausanne, EPFL, 2000. DOI : 10.5075/epfl-thesis-2127.

Enseignement et PhD

Doctorant·es actuel·les

Eliane Duperrex, Patricia Reinert, Florian Curvaia, Elena Tonin, Maxine Leonardi, Arsh Yusuf Shaikh, Yves Jean Paychère, Andrea Salati

A dirigé les thèses EPFL de

Guillaume Rey, Thomas d'Eysmond, Mirko Bischofberger, Laura Symul, Jonathan Bieler, Benjamin Zoller, Julia Catharina Cajan, Johannes Becker, Jonathan Aryeh Sobel, Rosamaria Cannavo, Damien Lionel Nicolas, Jérôme Mermet, Cédric Gobet, Jake Yeung, Colas Noé Droin, Clémence Yumie Syloun Hurni, Lorenzo Talamanca, Irene Lamberti

A co-dirigé les thèses EPFL de

Haleh Yasrebi, Simon Blanchoud, Nicolas Dénervaud, Alessandro De Simone, Onur Tidin

Cours

Dynamical systems in biology

BIO-341

La vie n'est pas linéaire. Ce cours présente les systèmes dynamiques comme technique de modélisation de processus biologiques simples. L'accent est mis sur l'analyse qualitative et numérique des modèles dynamiques non linéaires. Les exemples sont tirés de la biologie et des modèles de population.

Life Sciences engineering: genome to function

BIO-411

Les étudiants vont acquérir des connaissances fondamentales concernant la manière dont les génomes peuvent être modifiés, sur la manière dont leur fonction peut être déchiffrée et la manière dont ses productions (outputs) peuvent être modélisées.