Pascal Frossard
EPFL STI IEL LTS4
ELE 241 (Bâtiment ELE)
Station 11
1015 Lausanne
+41 21 693 56 55
+41 21 693 26 01
Office: ELE 241
EPFL › STI › IEM › LTS4
Website: https://lts4www.epfl.ch/
+41 21 693 56 55
EPFL › STI › STI-SEL › SEL-ENS
+41 21 693 56 55
EPFL › VPA › VPA-AVP-CP › AICENTER › AICENTER-GE
Website: https://ai.epfl.ch/
+41 21 693 56 55
EPFL › VPS › SDSC › SDSC-GE
Website: https://www.datascience.ch
+41 21 693 56 55
EPFL › IC › IC-DEC › IC-DO
Website: https://ic.epfl.ch/page8797.html
+41 21 693 56 55
EPFL › STI › STI-DEC › STI-DIR
+41 21 693 56 55
EPFL › VPA › VPA-AVP-CP › AICENTER › SNAI-GE
PhD Students
Qin Yiming, Carballo Castro Alba, Messori Elisa, Wang Ke, Ögüt Sevda, Alikasifoglu Tuna, Cappelletti William, Madeira Manuel, Amiri Mahdi, Senouf Ortal Yona, Rizou Vasiliki, Dimitriadis Nikolaos, Bilaloglu Cem, Rahmani Abdellah, Abdelraheem Amel, Baffou Jérémy Jean Philippe, Hazimeh Adam, Jung Vincent
Past EPFL PhD Students
Dan Jurca, Jean-Paul Wagner, Ivana Radulovic, Ivana Tosic, Effrosyni Kokiopoulou, Zafer Arican, Vijayaraghavan Thirumalai, Tamara Tosic, Eirina Bourtsoulatze, Elif Vural, Xiaowen Dong, Sofia Karygianni, Ana Karina De Abreu Goes, Dorina Thanou, Alhussein Fawzi, Stefano D'Aronco, Seyed Mohsen Moosavi Dezfooli, Renata Khasanova, Mattia Rossi, Hermina Petric Maretic, Effrosyni Simou, Beril Besbinar, Isabela Cunha Maia Nobre, Apostolos Modas, Clémentine Léa Aguet, Ahmet Caner Yüzügüler, Clément Vignac, Guillermo Ortiz Jimenez, Ádám Dániel Ivánkay, Arnaud Pannatier, Yamin Sepehri, Javier Alejandro Maroto Morales, Jelena Simeunovic, Chen Haolin
Past EPFL PhD Students as codirector
Luigi Bagnato, Suraj Srinivas, Angelos Katharopoulos, Ahmet Caner Yüzügüler, Guillermo Ortiz Jimenez, Harshitha Machiraju, Favero Alessandro
Courses
EECS Seminar: Advanced Topics in Machine Learning
Students learn about advanced topics in machine learning, artificial intelligence, optimization, and data science. Students also learn to interact with scientific work, analyze and understand strengths and weaknesses of scientific arguments of both theoretical and experimental results.
Network machine learning
Fundamentals, methods, algorithms and applications of network machine learning and graph neural networks