Profile picture

Edoardo Charbon

Nationality: CH

EPFL STI IMT AQUA
Rue de la Maladière 71b
Case postale 526
2002 Neuchâtel 2

Expertise

Ultra High-Speed and 3D Optical Sensors
LIDAR, FLIM, PET, FCS, NIROT
Cyo-CMOS for Quantum Computing
Computer Aided Design for VLSI
Virtual Human-Computer Interfaces
Edoardo Charbon (SM'00 F'17) received the Elektrotechnik Diploma from ETH Zurich, the M.S. from the University of California at San Diego, and the Ph.D. from the University of California at Berkeley in 1988, 1991, and 1995, respectively, all in electrical engineering and EECS. He has consulted with numerous organizations, including Bosch, X-Fab, Texas Instruments, Maxim, Sony, Agilent, and the Carlyle Group. He was with Cadence Design Systems from 1995 to 2000, where he was the architect of the company's initiative on information hiding for intellectual property protection. In 2000, he joined Canesta Inc., as the Chief Architect, where he led the development of wireless 3-D CMOS image sensors. Since 2002 he has been a member of the faculty of EPFL, where is a full professor since 2015. From 2008 to 2016 he was full professor and chair at the Delft University of Technology, where he spearheaded the university's effort on cryogenic electronics for quantum computing as part of QuTech.
He has been the driving force behind the creation of deep-submicron CMOS SPAD technology, which is mass-produced since 2015 and is present in smartphones, telemeters, proximity sensors, and medical diagnostics tools.
His interests span from 3-D vision, LiDAR, FLIM, FCS, NIROT to super-resolution microscopy, time-resolved Raman spectroscopy, and cryo-CMOS circuits and systems for quantum computing. He has authored or co-authored over 500 papers and two books, and he holds 30 patents. Dr. Charbon is the recipient of the 2023 IISS Pioneering Achievement Award, he is a distinguished visiting scholar of the W. M. Keck Institute for Space at Caltech, a fellow of the Kavli Institute of Nanoscience Delft, a distinguished lecturer of the IEEE Photonics Society, and a fellow of the IEEE.

OTHER PUBLICATIONS

Available at
http://aqua.epfl.ch/publications.html

Awards

IISS Pioneering Achievement Award

International Image Sensor Society (IISS)

2023

Selected publications

SPAD Sensors Come of Age

E. Charbon and S. Donati
Published in Optics & Photonics News (OPN), Vol. 21, pp. 35-41, Feb. 2010 in

On the Application of a Monolithic Array for Detecting Intensity-Correlated Photons Emitted by Different Source Types

D. L. Boiko, N. Gunther, B. N. Benedict, E. Charbon
Published in Optics Express, Vol. 17, N. 17, pp. 15087-15103, Aug. 2009 in

A Low-Noise Single-Photon Detector Implemented in a 130 nm CMOS Imaging Process

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, E. Charbon
Published in Solid-State Electronics, Vol. 53, N. 7, pp. 803-808, July 2009 in

Single-Photon Synchronous Detection

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon
Published in IEEE Journal of Solid-State Circuits, Vol. 44, N. 7, pp. 1977-1989, July 2009 in

Fast Fluorescence Dynamics in Non-ratiometric Calcium Indicators

M. Gersbach, D. L. Boiko, C. Niclass, C. Petersen, E. Charbon
Published in Optics Letters, Vol. 34, N. 3, pp. 362-364, Feb. 2009 in

A Quantum Imager for Intensity Correlated Photons

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, E. Charbon
Published in New Journal of Physics, Vol. 11, Jan. 2009 in

A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon
Published in IEEE Journal of Solid-State Circuits, Vol. 43, N. 12, pp. 2977-2989, Dec. 2008 in

Design and Characterization of A CMOS 3D Image Sensor based on Single Photon Avalanche Diodes

C. Niclass, A. Rochas, P.A. Besse, E. Charbon
Published in IEEE Journal of Solid-State Circuits, Vol. 40, N. 9, pp. 1847-1854, Sep. 2005 in

Watermarking-Based Copyright Protection of Sequential Functions

I. Torunoglu and E. Charbon
Published in IEEE Journal of Solid-State Circuits, Vol. 35, N. 3, pp. 434-440, Mar. 2000 in

Infoscience

[1] Photonic-electronic integrated circuit-based coherent LiDAR engine

A. LukashchukH. K. YildirimA. BancoraG. LihachevY. Liu  et al.

Nature Communications. 2024-04-11. DOI : 10.1038/s41467-024-47478-z.

[2] Cryo-CMOS Voltage References for the Ultrawide Temperature Range From 300 K Down to 4.2 K

J. van StaverenP. M. PadaliaE. CharbonC. G. AlmudeverG. Scappucci  et al.

Ieee Journal Of Solid-State Circuits. 2024-04-03. DOI : 10.1109/JSSC.2024.3378768.

[3] Large reconfigurable quantum circuits with SPAD arrays and multimode fibers

A. MakowskiM. DabrowskiI. M. AntolovicC. BruschiniH. Defienne  et al.

Optica. 2024-03-20. DOI : 10.1364/OPTICA.506943.

[4] Demonstration of particle tracking with scintillating fibres read out by a SPAD array sensor and application as a neutrino active target

M. FranksT. DiemingerK. KaneyasuD. SgalabernaC. Bruschini  et al.

European Physical Journal C. 2024-02-27. DOI : 10.1140/epjc/s10052-024-12509-y.

[5] Planar 16-band metasurface-enhanced spectral filter for integrated image sensing

C. ZhouO. J. F. MartinE. Charbon

Optics Express. 2024-02-26. DOI : 10.1364/OE.515675.

[6] Coupling a recurrent neural network to SPAD TCSPC systems for real-time fluorescence lifetime imaging

Y. LinP. MosA. ArdeleanC. BruschiniE. Charbon

Scientific Reports. 2024-02-08. DOI : 10.1038/s41598-024-52966-9.

[7] A 0.32 x 0.12 mm2 Cryogenic BiCMOS 0.1-8.8 GHz Low Noise Amplifier Achieving 4 K Noise Temperature for SNWD Readout

Y. PengJ. BenserhirM. CastanedaA. FogniniC. Bruschini  et al.

Ieee Transactions On Microwave Theory And Techniques. 2024-02-06. DOI : 10.1109/TMTT.2024.3354828.

[8] Ghost imaging using two SPAD array detectors: a parameter study towards the realization of a 3D quantum microscope

D. DavenportA. EshunB. DemoryP. MosY. Lin  et al.

2024-01-01. Conference on Quantum Effects and Measurement Techniques in Biology and Biophotonics, San Francisco, CA, JAN 27-30, 2024. p. 1286307. DOI : 10.1117/12.3002965.

[9] Imaging sensor device using an array of single-photon avalanche diode photodetectors

A. ArdeleanE. Charbon

WO2024078721 . 2024.

[10] Subsurface fluorescence time-of-flight imaging using a large-format single-photon avalanche diode sensor for tumor depth assessment

A. F. PetusseauS. S. StreeterA. UlkuY. FengK. S. Samkoe  et al.

Journal Of Biomedical Optics. 2024-01-01. DOI : 10.1117/1.JBO.29.1.016004.

[11] SPAD Developed in 55 nm Bipolar-CMOS-DMOS Technology Achieving Near 90% Peak PDP

W.-Y. HaE. ParkD. EomH.-S. ParkF. Gramuglia  et al.

Ieee Journal Of Selected Topics In Quantum Electronics. 2024-01-01. DOI : 10.1109/JSTQE.2023.3303678.

[12] A Gradient-Gated SPAD Array for Non-Line-of-Sight Imaging

J. ZhaoF. GramugliaP. KeshavarzianE.-H. TohM. Tng  et al.

Ieee Journal Of Selected Topics In Quantum Electronics. 2024-01-01. DOI : 10.1109/JSTQE.2023.3283150.

[13] A 73% Peak PDP Single-Photon Avalanche Diode Implemented in 110 nm CIS Technology With Doping Compensation

M.-J. LeeU. KaracaE. KizilkanC. BruschiniE. Charbon

Ieee Journal Of Selected Topics In Quantum Electronics. 2024-01-01. DOI : 10.1109/JSTQE.2023.3288674.

[14] Single-Photon Avalanche Diode Image Sensors for Harsh Radiation Environments

M.-L. Wu

Lausanne, EPFL, 2024. DOI : 10.5075/epfl-thesis-10446.

[15] Advanced Silicon and SWIR Single-Photon Avalanche Diodes: Design, Simulation, and Characterization

E. Kizilkan

Lausanne, EPFL, 2024. DOI : 10.5075/epfl-thesis-10381.

[16] On-Chip Fully Reconfigurable Artificial Neural Network in 16 nm FinFET for Positron Emission Tomography

A. A. MunteanY. ShoshanS. YuzhaninovE. RipicciniC. Bruschini  et al.

Ieee Journal Of Selected Topics In Quantum Electronics. 2024-01-01. DOI : 10.1109/JSTQE.2023.3346957.

[17] Doping Engineering for PDP Optimization in SPADs Implemented in 55-nm BCD Process

F. LiuC. BruschiniE.-H. TohP. ZhengY. Sun  et al.

Ieee Journal Of Selected Topics In Quantum Electronics. 2024-01-01. DOI : 10.1109/JSTQE.2024.3351676.

[18] Silicon CMOS and InGaAs(P)/InP SPADs for NIR/SWIR detection

U. Karaca

Lausanne, EPFL, 2024. DOI : 10.5075/epfl-thesis-10282.

[19] Analytical Modeling of Cryogenic Subthreshold Currents in 22-nm FDSOI Technology

H.-C. HanZ. ZhaoS. LehmannE. CharbonC. Enz

Ieee Electron Device Letters. 2024-01-01. DOI : 10.1109/LED.2023.3331022.

[20] EdgeAI-Aware Design of In-Memory Computing Architectures

M. A. Rios

Lausanne, EPFL, 2024. DOI : 10.5075/epfl-thesis-10393.

[21] LinoSPAD2: an FPGA-based , hardware-reconfigurable 512x1 single-photon camera system

T. MilaneseC. BruschiniS. BurriE. BernasconiA. C. Ulku  et al.

Optics Express. 2023-12-18. DOI : 10.1364/OE.505748.

[22] Digital pixel test structures implemented in a 65 nm CMOS process

G. A. RinellaA. AndronicM. AntonelliM. ArestiR. Baccomi  et al.

Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment. 2023-11-01. DOI : 10.1016/j.nima.2023.168589.

[23] NbN films with high kinetic inductance for high-quality compact superconducting resonators

S. FrascaI. ArabadzhievS. Y. Bros de PuechredonF. OppligerV. Jouanny  et al.

Physical Review Applied. 2023-10-09. DOI : 10.1103/PhysRevApplied.20.044021.

[24] Radiation Hardness of MALTA2, a Monolithic Active Pixel Sensor for Tracking Applications

D. V. BerleaP. AllportI. A. TortajadaD. BortolettoC. Buttar  et al.

Ieee Transactions On Nuclear Science. 2023-10-01. DOI : 10.1109/TNS.2023.3313721.

[25] Silicon spin qubits from laboratory to industry

M. De MichielisE. FerraroE. PratiL. HutinB. Bertrand  et al.

Journal Of Physics D-Applied Physics. 2023-09-07. DOI : 10.1088/1361-6463/acd8c7.

[26] MALTA-Cz: a radiation hard full-size monolithic CMOS sensor with small electrodes on high-resistivity Czochralski substrate

H. PerneggerP. AllportD. V. BerleaA. BirmanD. Bortoletto  et al.

Journal Of Instrumentation. 2023-09-01. DOI : 10.1088/1748-0221/18/09/P09018.

[27] A Compact Front-End Circuit for a Monolithic Sensor in a 65-nm CMOS Imaging Technology

F. PiroG. A. RinellaA. AndronicM. AntonelliM. Aresti  et al.

Ieee Transactions On Nuclear Science. 2023-09-01. DOI : 10.1109/TNS.2023.3299333.

[28] Correlated-photon imaging at 10 volumetric images per second

G. MassaroP. MosS. VasiukovF. Di LenaF. Scattarella  et al.

Scientific Reports. 2023-08-07. DOI : 10.1038/s41598-023-39416-8.

[29] Seeing Photons in Color

S. MaV. SundarP. MosC. BruschiniE. Charbon  et al.

Acm Transactions On Graphics. 2023-08-01. DOI : 10.1145/3592438.

[30] Performance of the MALTA telescope

M. van RijnbachG. GustavinoP. AllportI. A. TortajadaD. V. Berlea  et al.

European Physical Journal C. 2023-07-08. DOI : 10.1140/epjc/s10052-023-11760-z.

[31] Challenges and prospects for multi-chip microlens imprints on front-side illuminated SPAD imagers

C. BruschiniI. M. AntolovicF. ZanellaA. C. UlkuS. Lindner  et al.

Optics Express. 2023-06-19. DOI : 10.1364/OE.488177.

[32] A 3.3-Gb/s SPAD-Based Quantum Random Number Generator

P. KeshavarzianK. RamuD. TangC. WeillF. Gramuglia  et al.

Ieee Journal Of Solid-State Circuits. 2023-05-18. DOI : 10.1109/JSSC.2023.3274692.

[33] Single-photon avalanche diode fabricated in standard 55 nm bipolar-CMOS-DMOS technology with sub-20 V breakdown voltage

W.-y. HaE. ParkD. EomH.-S. ParkD. Chong  et al.

Optics Express. 2023-04-24. DOI : 10.1364/OE.485424.

[34] The effect of size, orientation and temperature on the deformation of microcast silver crystals

L. BorasiS. FrascaE. CharbonA. Mortensen

Acta Materialia. 2023-03-10. DOI : 10.1016/j.actamat.2023.118817.

[35] Towards precise optical measurements of steady state of and small changes in resting membrane potentials

D. RoyX. MichaletK. BharadwajE. W. MillerY. Wang  et al.

2023-02-10. p. 176A-176A.

[36] A 1-GS/s 6-8-b Cryo-CMOS SAR ADC for Quantum Computing

G. KieneR. W. J. OverwaterA. CataniaA. G. SreenivasuluP. Bruschi  et al.

Ieee Journal Of Solid-State Circuits. 2023-02-06. DOI : 10.1109/JSSC.2023.3237603.

[37] Nano-MOSFET - Foundation of Quantum Computing Part I

X. XueP. HartE. CharbonF. SebastianoA. Vladimirescu

Ieee Nanotechnology Magazine. 2023-02-01. DOI : 10.1109/MNANO.2022.3228097.

[38] Massively parallel, real-time multispeckle diffuse correlation spectroscopy using a 500 × 500 SPAD camera

M. A. WayneE. J. SieA. C. UlkuP. MosA. Ardelean  et al.

Biomedical Optics Express. 2023-01-09. DOI : 10.1364/BOE.473992.

[39] Learned Compressive Representations for Single-Photon 3D Imaging

F. Gutierrez-BarraganF. MuA. ArdeleanA. IngleC. Bruschini  et al.

2023-01-01. IEEE/CVF International Conference on Computer Vision (ICCV), Paris, FRANCE, OCT 02-06, 2023. p. 10722-10732. DOI : 10.1109/ICCV51070.2023.00987.

[40] SoDaCam: Software-defined Cameras via Single-Photon Imaging

V. SundarA. ArdeleanT. SwedishC. BrusschiniE. Charbon  et al.

2023-01-01. IEEE/CVF International Conference on Computer Vision (ICCV), Paris, FRANCE, OCT 02-06, 2023. p. 8131-8142. DOI : 10.1109/ICCV51070.2023.00750.

[41] Extended Temperature Modeling of InGaAs/InP SPADs

E. KizilkanU. KaracaV. PesicM. -J. LeeC. Bruschini  et al.

2023-01-01. IEEE 53rd European Solid-State Device Research Conference (ESSDERC), Lisbon, PORTUGAL, SEP 11-14, 2023. p. 140-143. DOI : 10.1109/ESSDERC59256.2023.10268545.

[42] Radiation-tolerant Multichannel Dew Point Temperature Monitoring System for High Energy Physics Applications

A. Kapic

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-10177.

[43] Front-End Circuits for Radiation-Hard Monolithic CMOS Sensors targeting High-Energy Physics Applications

F. Piro

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-10693.

[44] GeSn as next-generation material for short-wave infrared single-photon detection

A. Giunto

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-9667.

[45] Scalable multi-chip quantum architectures enabled by cryogenic hybrid wireless/quantum-coherent network-in-package

E. AlarconS. AbadalF. SebastianoM. BabaieE. Charbon  et al.

2023-01-01. 56th IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, May 21-25, 2023. DOI : 10.1109/ISCAS46773.2023.10181857.

[46] Ultra-Low Power Short-Range 60-GHz FMCW Radar Front-End

S. Cerida Rengifo

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-9707.

[47] Heralded Spectroscopy: a new single-particle probe for nanocrystal photophysics

G. LubinR. TenneA. C. UlkuI. M. AntolovicS. Burri  et al.

2023-01-01. Conference on Single Molecule Spectroscopy and Superresolution Imaging XVI, San Francisco, CA, Jan 28-29, 2023. p. 1238603. DOI : 10.1117/12.2650463.

[48] Burst Vision Using Single-Photon Cameras

S. MaP. MosE. CharbonM. Gupta

2023-01-01. 23rd IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, Jan 03-07, 2023. p. 5364-5374. DOI : 10.1109/WACV56688.2023.00534.

[49] Time-resolved imaging with SPAD detectors

J. Zhao

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-10062.

[50] Overview of Cryogenic Operation in Nanoscale Technology Nodes

N. RoknianY. ShoshanI. StangerA. TemanE. Charbon  et al.

2023-01-01. 14th IEEE Latin American Symposium on Circuits and Systems (LASCAS), Quito, ECUADOR, Feb 28-Mar 03, 2023. p. 199-202. DOI : 10.1109/LASCAS56464.2023.10108221.

[51] Modelling and design of CMOS SPAD sensors for quantum random number generation

P. Keshavarzian

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-10193.

[52] Imaging system with silicon photomultipliers and method for operating thereof

A. A. MunteanE. Charbon

EP4377720 ; WO2023006186 . 2023.

[53] A Cryo-CMOS PLL for Quantum Computing Applications

J. GongE. CharbonF. SebastianoM. Babaie

Ieee Journal Of Solid-State Circuits. 2023. DOI : 10.1109/JSSC.2022.3223629.

[54] Method and device for performing spectrally and temporally resolved spectroscopy of single photon emission in a quantum device

C. BruschiniE. CharbonA. C. ÜlküS. BurriG. Lubin  et al.

WO2023275738 . 2023.

[55] Amorphous Silicon Based Microchannel Plates for Time-of-Flight Positron Emission Tomography

S. A. Frey

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-9962.

[56] High-Kinetic Inductance Superconducting Technology for Quantum Applications

S. Frasca

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-9947.

[57] Integrated electronics for time-of-flight positron emission tomography photodetectors

A. A. Muntean

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-9529.

[58] Computational Imaging SPAD Cameras

A. Ardelean

Lausanne, EPFL, 2023. DOI : 10.5075/epfl-thesis-9501.

[59] Development of a large-area, light-weight module using the MALTA monolithic pixel detector

F. DachsP. AllportI. A. TortajadaD. V. BerleaD. Bortoletto  et al.

Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment. 2022-12-19. DOI : 10.1016/j.nima.2022.167809.

[60] Resolution and penetration depth of reflection-mode time-domain near infrared optical tomography using a ToF SPAD camera

J. JiangM. AckermannE. RussomannoA. d. C. MataE. Charbon  et al.

Biomedical Optics Express. 2022-12-01. DOI : 10.1364/BOE.470985.

[61] Coupling silicon lithography with metal casting

L. BorasiS. FrascaK. Nicolet-Dit-FelixE. CharbonA. Mortensen

Applied Materials Today. 2022-12-01. DOI : 10.1016/j.apmt.2022.101647.

[62] Direct MIP detection with sub-10 ps timing resolution Geiger-Mode APDs

F. GramugliaE. RipicciniC. A. FenoglioM.-L. WuL. Paolozzi  et al.

2022-11-25. 15th Pisa Meeting on Advanced Detectors, La Biodola, Isola d’Elba, Italy, May 22-28, 2022. p. 167813. DOI : 10.1016/j.nima.2022.167813.

[63] Guard-Ring-Free InGaAs/InP Single-Photon Avalanche Diode Based on a Novel One-Step Zn-Diffusion Technique

E. KizilkanU. KaracaV. PesicM.-J. LeeC. Bruschini  et al.

Ieee Journal Of Selected Topics In Quantum Electronics. 2022-09-01. DOI : 10.1109/JSTQE.2022.3162527.

[64] A Cryo-CMOS Oscillator With an Automatic Common-Mode Resonance Calibration for Quantum Computing Applications

J. GongY. ChenE. CharbonF. SebastianoM. Babaie

Ieee Transactions On Circuits And Systems I-Regular Papers. 2022-08-24. DOI : 10.1109/TCSI.2022.3199997.

[65] Back-gate effects on DC performance and carrier transport in 22 nm FDSOI technology down to cryogenic temperatures

H.-C. HanF. JazaeriA. D'AmicoZ. ZhaoS. Lehmann  et al.

Solid-State Electronics. 2022-07-01. DOI : 10.1016/j.sse.2022.108296.

[66] Pixel super-resolution with spatially entangled photons

H. DefienneP. CameronB. NdaganoA. LyonsM. Reichert  et al.

Nature Communications. 2022-06-22. DOI : 10.1038/s41467-022-31052-6.

[67] A 1-mu W Radiation-Hard Front-End in a 0.18-mu m CMOS Process for the MALTA2 Monolithic Sensor

F. PiroP. AllportI. AsensiI. BerdalovicD. Bortoletto  et al.

Ieee Transactions On Nuclear Science. 2022-06-01. DOI : 10.1109/TNS.2022.3170729.

[68] A Cryo-CMOS Wideband Quadrature Receiver With Frequency Synthesizer for Scalable Multiplexed Readout of Silicon Spin Qubits

Y. PengA. RuffinoT.-Y. YangJ. MichniewiczM. F. Gonzalez-Zalba  et al.

Ieee Journal Of Solid-State Circuits. 2022-05-25. DOI : 10.1109/JSSC.2022.3174605.

[69] In vitro and in vivo NIR fluorescence lifetime imaging with a time-gated SPAD camera

J. T. SmithA. RudkouskayaS. GaoJ. M. GuptaA. Ulku  et al.

Optica. 2022-05-20. DOI : 10.1364/OPTICA.454790.

[70] A 500 x 500 Dual-Gate SPAD Imager With 100% Temporal Aperture and 1 ns Minimum Gate Length for FLIM and Phasor Imaging Applications

M. WayneA. UlkuA. ArdeleanP. MosC. Bruschini  et al.

Ieee Transactions On Electron Devices. 2022-05-16. DOI : 10.1109/TED.2022.3168249.

[71] Sub-10 ps Minimum Ionizing Particle Detection With Geiger-Mode APDs

F. GramugliaE. RipicciniC. A. FenoglioM.-L. WuL. Paolozzi  et al.

Frontiers In Physics. 2022-05-11. DOI : 10.3389/fphy.2022.849237.

[72] On Analog Silicon Photomultipliers in Standard 55-nm BCD Technology for LiDAR Applications

J. ZhaoT. MilaneseF. GramugliaP. KeshavarzianS. S. Tan  et al.

Ieee Journal Of Selected Topics In Quantum Electronics. 2022-05-01. DOI : 10.1109/JSTQE.2022.3161089.

[73] Toward Super Temporal Resolution by Suppression of Mixing Effects of Electrons

Nguyen Hoai NgoT. G. EtohK. ShimonomuraT. AndoY. Matsunaga  et al.

Ieee Transactions On Electron Devices. 2022-04-29. DOI : 10.1109/TED.2022.3168617.

[74] Radiation Hardness Study of Single-Photon Avalanche Diode for Space and High Energy Physics Applications

M.-L. WuE. RipicciniE. KizilkanF. GramugliaP. Keshavarzian  et al.

Sensors. 2022-04-01. DOI : 10.3390/s22082919.

[75] Heralded spectroscopy of single nanocrystals

G. LubinR. TenneA. C. UlkuI. M. AntolovicS. Burri  et al.

Optical and Quantum Sensing and Precision Metrology II, San Francisco, CA, USA, January 22-28, 2022.

[76] Characterization of a large gated SPAD array for in vivo fluorescence lifetime imaging of drug target engagement

J. T. SmithA. RudkouskayaS. GaoA. UlkuC. E. Bruschini  et al.

Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XX, San Francisco, CA, USA, January 22-28, 2022.

[77] Sub-surface fluorescence time-of-flight imaging using a large format SPAD sensor

A. PétusseauP. BruzaA. UlkuS. StreeterK. S. Samkoe  et al.

Molecular-Guided Surgery: Molecules, Devices, and Applications VIII, San Francisco, CA, USA, January 22-28, 2022.

[78] Characterization of a large gated SPAD array for widefield NIR fluorescence lifetime imaging in vitro and in vivo

J. T. SmithA. RudkouskayaS. GaoA. UlkuC. Bruschini  et al.

2022-02-11. p. 415A-415A. DOI : 10.1016/j.bpj.2021.11.691.

[79] Light detection and ranging with entangled photons

J. ZhaoA. LyonsA. C. UlkuH. DefienneD. Faccio  et al.

Optics Express. 2022-01-31. DOI : 10.1364/OE.435898.

[80] Cryogenic RF Characterization and Simple Modeling of a 22 nm FDSOI Technology

H.-C. HanF. JazaeriA. D'AmicoZ. ZhaoS. Lehmann  et al.

2022-01-01. 52nd IEEE European Solid-State Device Research Conference (ESSDERC), Milan, ITALY, Sep 19-22, 2022. p. 269-272. DOI : 10.1109/ESSDERC55479.2022.9947192.

[81] Photon and minimum ionizing particle detection with ultra-fast Geiger-mode APDs

E. RipicciniF. GramugliaC. A. FenoglioM.-L. WuL. Paolozzi  et al.

High Energy Physics - Integrated Circuits Workshop 2022 (HEP-IC), FNAL, USA (online), May 20, 2022.

[82] CMOS SPADs for High Radiation Environments

M.-L. WuF. GramugliaE. RipicciniC. A. FenoglioE. Kizilkan  et al.

IEEE Nuclear Science Symposium, Milan, Italy, November 7-11, 2022.

[83] Light Extraction Enhancement in Inorganic Scintillators for Total-body PET Scanners using Photonic Crystals

F. GramugliaE. RipicciniV. GatéH. KadiriD. Turover  et al.

9th Conference on PET/MR and SPECT/MR & Total-body PET workshop, La Biodola, Isola d’Elba, Italy, May 28 - Jun 1, 2022.

[84] Blumino: a fully integrated analog SiPM with on-chip time conversion

A. A. MunteanE. RipicciniC. BruschiniE. Charbon

9th Conference on PET/MR and SPECT/MR & Total-body PET workshop, La Biodola, Isola d’Elba, Italy, May 28 - Jun 1, 2022.

[85] Progress in CMOS SPADs and digital SiPMs for fast timing applications

C. BruschiniE. CharbonF. GramugliaE. RipicciniA. A. Muntean

Fast Timing in Medical Imaging Workshop, Valencia, Spain, Jun 4-6, 2022.

[86] Large-format SPAD arrays and imagers for molecular imaging

C. BruschiniE. CharbonF. GramugliaE. RipicciniA. A. Muntean  et al.

MEDAMI 2022 (Mediterranean Thematic Workshop in Advanced Molecular Imaging), Portorož, Slovenia},, September 4-7, 2022.

[87] A 7.5-ps, 60% PDP low-noise SPAD fabricated in CMOS technology

F. GramugliaP. KeshavarzianE. KizilkanM.-L. WuC. Bruschini  et al.

ISSW 2022 (International SPAD Sensor Workshop), Online, June 13-15, 2022.

[88] Large-format SPAD image sensors for biomedical and HEP applications

E. CharbonC. Bruschini

NDIP (9th Conference on new developments in photodetectors), Troyes, France, July 4-8, 2022.

[89] Detecting photons and MIPs with ultra-fast Geiger mode APDs

F. GramugliaE. RipicciniC. A. FenoglioM.-L. WuL. Paolozzi  et al.

NDIP (9th Conference on new developments in photodetectors), Troyes, France, July 4-8, 2022.

[90] Characterization of a large Gated SPAD camera for in vivo Macroscopic Fluorescence Lifetime Imaging

J. T. SmithJ. M. GuptaA. RudkouskayaS. GaoA. Ulku  et al.

2022. Clinical and Translational Biophotonics 2022, Fort Lauderdale, FLA, United States, April 24-27, 2022. p. TW4B.5. DOI : 10.1364/TRANSLATIONAL.2022.TW4B.5.

[91] Using Heralded Spectrometry to Measure the Biexciton Binding Energy of an Individual Quantum Dot

R. TenneG. LubinA. C. ÜlküI. M. AntolovicS. Burri  et al.

2022. CLEO: Applications and Technology 2022, San Jose, CA, United States, May 5-10, 2022. DOI : 10.1364/CLEO_AT.2022.JTu3A.3.

[92] Low-noise high-dynamic-range single-photon avalanche diodes with integrated PQAR circuit in a standard 55 nm BCD

P. KeshavarzianF. GramugliaE. KizilkanC. BruschiniS. S. Tan  et al.

2022-01-01. Conference on Advanced Photon Counting Techniques XVI, ELECTR NETWORK, Apr 05-Jun 12, 2022. p. 120890B. DOI : 10.1117/12.2618349.

[93] NIR Fluorescence lifetime macroscopic imaging with a time-gated SPAD camera

X. MichaletA. UlkuJ. T. SmithC. BruschiniS. Weiss  et al.

2022-01-01. Conference on Multiphoton Microscopy in the Biomedical Sciences XXII, ELECTR NETWORK, Jan 22-Feb 24, 2022. p. 1196507. DOI : 10.1117/12.2607833.

[94] Practical Compilation of Quantum Programs

B. Schmitt Antunes

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-9278.

[95] Contact Design for Silicon Heterojunction Solar Cells

L. M. Antognini

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-9477.

[96] SiGe Time Resolving Pixel Detectors for High Energy Physics and Medical Imaging

F. Martinelli

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-9949.

[97] Method and light microscope with a plurality of arrays of photon-counting detector elements

T. AnhutI. M. AntolovicD. SchwedtE. CharbonC. Bruschini

JP2023540435 ; US2023288687 ; CN116710828 ; EP4189456 ; WO2022022807 . 2022.

[98] High-Performance CMOS SPAD-Based Sensors for Time-of-Flight PET Applications

F. Gramuglia

Lausanne, EPFL, 2022. DOI : 10.5075/epfl-thesis-8720.

[99] 2.5 Hz sample rate time-domain near-infrared optical tomography based on SPAD-camera image tissue hemodynamics

J. JiangA. d. C. MataS. LindnerE. CharbonM. Wolf  et al.

Biomedical Optics Express. 2022-01-01. DOI : 10.1364/BOE.441061.

[100] A cryo-CMOS chip that integrates silicon quantum dots and multiplexed dispersive readout electronics

A. RuffinoT.-Y. YangJ. MichniewiczY. PengE. Charbon  et al.

Nature Electronics. 2022. DOI : 10.1038/s41928-021-00687-6.

[101] A Low-Jitter and Low-Spur Charge-Sampling PLL

J. GongE. CharbonF. SebastianoM. Babaie

Ieee Journal Of Solid-State Circuits. 2022. DOI : 10.1109/JSSC.2021.3105335.

[102] A Low-noise CMOS SPAD Pixel with 12.1 ps SPTR and 3 ns Dead Time

F. GramugliaM.-L. WuC. BruschiniM.-J. LeeE. Charbon

IEEE Journal of Selected Topics in Quantum Electronics. 2022. DOI : 10.1109/JSTQE.2021.3088216.

[103] Resolving the Controversy in Biexciton Binding Energy of Cesium Lead Halide Perovskite Nanocrystals through Heralded Single-Particle Spectroscopy

G. LubinG. YanivM. KazesA. C. UlkuI. M. Antolovic  et al.

Acs Nano. 2021-12-28. DOI : 10.1021/acsnano.1c06624.

[104] Measurements and analysis of different front-end configurations for monolithic SiGe BiCMOS pixel detectors for HEP applications

F. MartinelliC. MaglioccaR. CardellaE. CharbonG. Iacobucci  et al.

Journal Of Instrumentation. 2021-12-01. DOI : 10.1088/1748-0221/16/12/P12038.

[105] Scaling silicon-based quantum computing using CMOS technology

M. F. Gonzalez-ZalbaS. de FranceschiE. CharbonT. MeunierM. Vinets  et al.

Nature Electronics. 2021-12-01. DOI : 10.1038/s41928-021-00681-y.

[106] Theoretical minimum uncertainty of single-molecule localizations using a single-photon avalanche diode array

Q. HouwinkD. KalisvaartS.-T. HungJ. CnossenD. Fan  et al.

Optics Express. 2021-11-22. DOI : 10.1364/OE.439340.

[107] Deep cryogenic operation of 55 nm CMOS SPADs for quantum information and metrology applications

A. MorelleF. GramugliaP. KeshavarzianC. BruschiniD. Chong  et al.

2021-11-05. Quantum Information and Measurement {VI} 2021, Washington, DC United States, November 1-5, 2021. p. M2B.7. DOI : 10.1364/QIM.2021.M2B.7.

[108] A massively scalable Time-to-Digital Converter with a PLL-free calibration system in a commercial 130 nm process

F. MartinelliP. ValerioR. CardarelliE. CharbonG. Iacobucci  et al.

Journal Of Instrumentation. 2021-11-01. DOI : 10.1088/1748-0221/16/11/P11023.

[109] FPGA-based SiPM Timestamp Detection Setup for High Timing Resolution TOF-PET Application

N. LusardiF. GarzettiS. SalgaroN. CornaE. Ronconi  et al.

IEEE Nuclear Science Symposium 28th International Conference on Room-Temperature Semiconductor Detectors (RTSD), Yokohama, Japan (virtual event), October 16-23, 2021.

[110] Towards the ideal PET detector: a scalable architecture with high intrinsic spatial resolution, DOI and sub-200 ps TOF capability

G. SportelliM. G. BisogniC. BruschiniP. CarraE. Charbon  et al.

2021-10-20. IEEE Nuclear Science Symposium 28th International Conference on Room-Temperature Semiconductor Detectors (RTSD), Yokohama, Japan (virtual event), October 16-23, 2021.

[111] Architecture and Characterization of a CMOS 3D-Stacked FSI Multi-Channel Digital SiPM for Time-of-Flight PET Applications

F. GramugliaA. A. MunteanC. A. FenoglioE. Venialgo AraujoM. J. Lee  et al.

2021-10-19. 2021 Virtual IEEE Nuclear Science Symposium and Medical Imaging Conference. 68th IEEE NSS MIC 2021, [Virtual], October 16-23, 2021. p. 1-2. DOI : 10.1109/NSS/MIC44867.2021.9875625.

[112] SPAD Microcells with 12.1 ps SPTR for SiPMs in TOF-PET Applications

F. GramugliaM.-L. WuM. J. LeeC. BruschiniE. Charbon

2021-10-19. 2021 Virtual IEEE Nuclear Science Symposium and Medical Imaging Conference. 68th IEEE NSS MIC 2021, [Virtual], October 16-23, 2021. p. 1-2. DOI : 10.1109/NSS/MIC44867.2021.9875811.

[113] Heralded Spectroscopy Reveals Exciton-Exciton Correlations in Single Colloidal Nanocrystals

G. LubinR. TenneV. J. YallapragadaS. KargG. Yaniv  et al.

Sensing with Quantum Light (SQL) 754. WE-Heraeus-Seminar, Bad Honnef, Germany, 26-29 September 2021.

[114] Engineering Breakdown Probability Profile for PDP and DCR Optimization in a SPAD Fabricated in a Standard 55nm BCD Process

F. GramugliaP. KeshavarzianE. KizilkanC. BruschiniS. S. Tan  et al.

IEEE Journal of Selected Topics in Quantum Electronics. 2021-09-23. DOI : 10.1109/JSTQE.2021.3114346.

[115] Towards the ideal TOF-PET detector: a scalable architecture with uncompromised performance for clinical and total-body applications

G. SportelliC. BruschiniP. CarraE. CharbonE. Ciarrocchi  et al.

Total-body PET 2021, [Online], September 22nd-24th, 2021.

[116] Quanta Burst Photography

S. MaS. GuptaA. C. ÜlküC. BruschiniE. Charbon  et al.

2021-09-20. 2021 International Image Sensor Workshop (IISW), [Online], September 20-23, 2021. p. 41-44, R12.

[117] CMOS 3D-Stacked FSI Multi-Channel Digital SiPM for Time-of-Flight Vision Applications

F. GramugliaA. A. MunteanC. A. FenoglioE. Venialgo AraujoM. J. Lee  et al.

2021-09-20. 2021 International Image Sensor Workshop (IISW), Online, September 20-23, 2021. p. 69-72, R19.

[118] A 500×500 Dual-Gate SPAD Imager with 100% Temporal Aperture and 1 ns Minimum Gate Width for FLIM and Phasor Imaging Applications

A. C. ÜlküA. ArdeleanP. MosC. BruschiniE. Charbon

2021-09-20. 2021 International Image Sensor Workshop (IISW), [Online], September 20-23, 2021. p. 304-307, R46.

[119] Cryogenic Characterization of 16 nm FinFET Technology for Quantum Computing

H.-C. HanF. JazaeriA. D'AmicoA. BaschirottoE. Charbon  et al.

2021-09-13. 47th European Solid State Circuits Conference (ESSCIRC 2021), Grenoble, France, Septembre 13-22, 2021. p. 71-74. DOI : 10.1109/ESSCIRC53450.2021.9567747.

[120] Random flip-flop: adding quantum randomness to digital circuits for improved cyber security, artificial intelligence and more

M. StipčevićM. BatelićE. CharbonC. BruschiniM. I. Antolović

2021-09-12. Emerging Imaging and Sensing Technologies for Security and Defence VI, [Online only], September 13-24, 2021. DOI : 10.1117/12.2597842.

[121] Certification of the efficient random number generation technique based on single-photon detector arrays and time-to-digital converters

A. StancoD. G. MarangonG. ValloneS. BurriE. Charbon  et al.

Iet Quantum Communication. 2021-09-01. DOI : 10.1049/qtc2.12018.

[122] In-depth Cryogenic Characterization of 22 nm FDSOI Technology for Quantum Computation

H.-C. HanF. JazaeriA. D'AmicoZ. ZhaoS. Lehmann  et al.

2021-09-01. 7th Joint International EuroSOI Workshop and International Conference on Ultimate Integration on Silicon (EuroSOI-ULIS'2021), Caen, France, Septembre 1-3, 2021. p. 1-4. DOI : 10.1109/EuroSOI-ULIS53016.2021.9560181.

[123] Blumino: The First Fully Integrated Analog SiPM With On-Chip Time Conversion

A. MunteanE. VenialgoA. ArdeleanA. SachdevaE. Ripiccini  et al.

Ieee Transactions On Radiation And Plasma Medical Sciences. 2021-09-01. DOI : 10.1109/TRPMS.2020.3045081.

[124] Heralded Spectroscopy Reveals Exciton-Exciton Correlations in Single Colloidal Quantum Dots

G. LubinR. TenneA. C. UlkuI. M. AntolovicS. Burri  et al.

Nano Letters. 2021-08-25. DOI : 10.1021/acs.nanolett.1c01291.

[125] Single-photon avalanche diode imaging sensor for subsurface fluorescence LiDAR

P. BruzaA. PetusseauA. UlkuJ. GunnS. Streeter  et al.

Optica. 2021-08-20. DOI : 10.1364/OPTICA.431521.

[126] Towards Quantum 3D Imaging Devices

C. AbbattistaL. AmorusoS. BurriE. CharbonF. Di Lena  et al.

Applied Sciences. 2021-07-12. DOI : 10.3390/app11146414.

[127] Towards quantum 3D imaging devices

G. MassaroC. AbbattistaL. AmorosoS. BurriE. Charbon  et al.

2021-07-11. Photonics for Quantum 2021, [Online only], July 12-23, 2021. p. 5. DOI : 10.1117/12.2600791.

[128] SPAD array technology enables fluctuation-contrast super-resolution in a confocal microscope

R. TenneA. MakowskiG. LubinI. M. AntolovicU. Rossman  et al.

2021-06-20. European Conferences on Biomedical Optics - Advances in Microscopic Imaging III, [Virtual event], June 20-25, 2021. p. Advances In Microscopic Imaging Iii. DOI : 10.1117/12.2615683.

[129] Quanta Burst Photography

S. MaS. GuptaA. C. ÜlküC. BruschiniE. Charbon  et al.

2021 International Conference on Computational Photography (ICCP), Haifa (Israel) / hybrid, May 23-25, 2021.

[130] A Scaling Law for SPAD Pixel Miniaturization

K. MorimotoE. Charbon

Sensors. 2021-05-15. DOI : 10.3390/s21103447.

[131] CMOS-based cryogenic control of silicon quantum circuits

X. XueB. PatraJ. P. G. van DijkN. SamkharadzeS. Subramanian  et al.

Nature. 2021-05-13. DOI : 10.1038/s41586-021-03469-4.

[132] A Cryogenic Broadband Sub-1-dB NF CMOS Low Noise Amplifier for Quantum Applications

Y. PengA. RuffinoE. Charbon

IEEE Journal of Solid-State Circuits. 2021-04-26. DOI : 10.1109/JSSC.2021.3073068.

[133] Full-field quantum imaging with a single-photon avalanche diode camera

H. DefienneJ. ZhaoE. CharbonD. Faccio

Physical Review A. 2021-04-13. DOI : 10.1103/PhysRevA.103.042608.

[134] A Pixel Design of a Branching Ultra-Highspeed Image Sensor

N. H. NgoK. ShimonomuraT. AndoT. ShimuraH. Watanabe  et al.

Sensors. 2021-04-03. DOI : 10.3390/s21072506.

[135] SwissSPAD3 – a dual-gate photon-counting SPAD sensor for widefield FLIM imaging

A. C. ÜlküA. ArdeleanP. MosE. CharbonC. Bruschini

Focus on Microscopy 2021 (FOM 2021), Online, March 28-31, 2021.

[136] Light Extraction Enhancement Techniques for Inorganic Scintillators

F. GramugliaS. FrascaE. RipicciniE. Venialgo AraujoV. Gâté  et al.

Crystals. 2021-03-30. DOI : 10.3390/cryst11040362.

[137] Quantum super-resolved imaging with SPAD array

G. LubinR. TenneI. M. AntolovicE. CharbonC. Bruschini  et al.

Focus on Microscopy 2021 (FOM 2021), Online, March 28-31, 2021.

[138] Super-resolved confocal fluctuation microscopy using a SPAD array

A. MakowskiR. TenneG. LubinA. SrodaI. M. Antolovic  et al.

Focus on Microscopy 2021 (FOM 2021), Online, March 28-31, 2021.

[139] Megapixel time-gated SPAD image sensor for scientific imaging applications

K. MorimotoA. ArdeleanM.-L. WuA. C. UlkuI. M. M. Antolovic  et al.

High-Speed Biomedical Imaging and Spectroscopy VI, San Francisco, USA (virtual event), March 6-11, 2021.

[140] A Fully-Integrated 40-nm 5-6.5 GHz Cryo-CMOS System-on-Chip with I/Q Receiver and Frequency Synthesizer for Scalable Multiplexed Readout of Quantum Dots

A. RuffinoY. PengT.-Y. YangJ. MichniewiczM. F. Gonzalez-Zalba  et al.

2021-02-17. 2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, California, USA, February 13-22, 2021. DOI : 10.1109/ISSCC42613.2021.9365758.

[141] The Michelangelo step: removing scalloping and tapering effects in high aspect ratio through silicon vias

S. FrascaR. C. LeghzielI. N. ArabadzhievB. PasquierG. F. M. Tomassi  et al.

Scientific Reports. 2021-02-17. DOI : 10.1038/s41598-021-83546-w.

[142] Superluminal Motion-Assisted Four-Dimensional Light-in-Flight Imaging

K. MorimotoM.-L. WuA. ArdeleanE. Charbon

Physical Review X. 2021-01-08. DOI : 10.1103/PhysRevX.11.011005.

[143] In Phantom Validation of Time-Domain Near-Infrared Optical Tomography Pioneer for Imaging Brain Hypoxia and Hemorrhage

J. JiangS. LindnerA. Di Costanzo-MataC. ZhangE. Charbon  et al.

2021-01-01. 42nd Annual Meeting of the International-Society-on-Oxygen-Transport-to-Tissue (ISOTT), Albuquerque, NM, Jul 28-31, 2019. p. 341-346. DOI : 10.1007/978-3-030-48238-1_54.

[144] Probe Design Optimization for Time-Domain NIROT "Pioneer" System for Imaging the Oxygenation of the Preterm Brain

A. Di Costanzo-MataJ. JiangS. LindnerC. ZhangE. Charbon  et al.

2021-01-01. 42nd Annual Meeting of the International-Society-on-Oxygen-Transport-to-Tissue (ISOTT), Albuquerque, NM, Jul 28-31, 2019. p. 359-363. DOI : 10.1007/978-3-030-48238-1_57.

[145] System and method for removing scalloping and tapering effects in high aspect ratio through-silicon vias of wafers

S. FrascaE. CharbonS. CarraraR. Leghziel

US11735478 ; US2021351075 . 2021.

[146] Low-Power and Wide-Tuning Range Frequency Generation for FMCW Radars in Advanced CMOS Technologies

F. Chicco

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-7662.

[147] Heterostructure design and field management in III-N high-electron mobility electronic devices

C. Erine

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-9097.

[148] Microwave-to-Optical Transduction with Gallium Phosphide Electro-Optomechanical Devices

S. B. K. Hönl

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-9178.

[149] A 2.7mW 45fS(rms)-Jitter Cryogenic Dynamic-Amplifier-Based PLL for Quantum Computing Applications

J. GongE. CharbonF. SebastianoM. Babaie

2021-01-01. IEEE Custom Integrated Circuits Conference (CICC), ELECTR NETWORK, Apr 25-30, 2021. DOI : 10.1109/CICC51472.2021.9431541.

[150] A 6-to-8GHz 0.17mW/Qubit Cryo-CMOS Receiver for Multiple Spin Qubit Readout in 40nm CMOS Technology

B. PrabowoG. ZhengM. MehrpooB. PatraP. Harvey-Collard  et al.

2021-01-01. IEEE International Solid-State Circuits Conference (ISSCC), ELECTR NETWORK, Feb 13-22, 2021. p. 212-214. DOI : 10.1109/ISSCC42613.2021.9365848.

[151] A 256x128 3D-Stacked (45nm) SPAD FLASH LiDAR with 7-Level Coincidence Detection and Progressive Gating for 100m Range and 10klux Background Light

P. PadmanabhanC. ZhangM. CazzanigaB. EfeA. R. Ximenes  et al.

2021-01-01. IEEE International Solid-State Circuits Conference (ISSCC), ELECTR NETWORK, Feb 13-22, 2021. p. 111-113. DOI : 10.1109/ISSCC42613.2021.9366010.

[152] A 1GS/s 6-to-8b 0.5mW/Qubit Cryo-CMOS SAR ADC for Quantum Computing in 40nm CMOS

G. KieneA. CataniaR. OverwaterP. BruschiE. Charbon  et al.

2021-01-01. IEEE International Solid-State Circuits Conference (ISSCC), ELECTR NETWORK, Feb 13-22, 2021. p. 214-216. DOI : 10.1109/ISSCC42613.2021.9365927.

[153] High sensitivity single-photon avalanche diode array

I. AntolovicC. BruschiniE. Charbon

US2022384671 ; WO2021089115 . 2021.

[154] Cryogenic MOSFET Modeling for Large-Scale Quantum Computing

A. L. M. Beckers

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-8365.

[155] Integrated multiplexed microwave readout of silicon quantum dots in a cryogenic CMOS chip

A. RuffinoT.-Y. YangJ. MichniewiczY. PengE. Charbon  et al.

2021.

[156] Large-Format Time-Gated SPAD Cameras for Real-Time Phasor-Based FLIM

A. C. Ülkü

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-8311.

[157] Cryogenic CMOS Circuits and Systems: Challenges and Opportunities in Designing the Electronic Interface for Quantum Processors

E. CharbonM. BabaieA. VladimirescuF. Sebastiano

Ieee Microwave Magazine. 2021-01-01. DOI : 10.1109/MMM.2020.3023271.

[158] Cryogenic CMOS Integrated Circuits for Scalable Readout of Silicon Quantum Computers

A. Ruffino

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-7984.

[159] Low-power image sensor system with single-photon avalanche diode photodetectors

I. AntolovicC. BruschiniE. Charbon

US2022264047 ; WO2021018403 . 2021.

[160] Megapixel SPAD cameras for time-resolved applications

K. Morimoto

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-8773.

[161] Direct time-of-flight SPAD image sensors for light detection and ranging

P. Padmanabhan

Lausanne, EPFL, 2021. DOI : 10.5075/epfl-thesis-8231.

[162] Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation

V. ZickusM.-L. WuK. MorimotoV. KapitanyA. Fatima  et al.

Scientific Reports. 2020-12-02. DOI : 10.1038/s41598-020-77737-0.

[163] Toward the Super Temporal Resolution Image Sensor with a Germanium Photodiode for Visible Light

N. H. NgoA. Q. NguyenF. M. BuflerY. KamakuraH. Mutoh  et al.

Sensors. 2020-12-02. DOI : 10.3390/s20236895.

[164] Designing a DDS-Based SoC for High-Fidelity Multi-Qubit Control

J. P. G. van DijkB. PatraS. PelleranoE. CharbonF. Sebastiano  et al.

Ieee Transactions On Circuits And Systems I-Regular Papers. 2020-12-01. DOI : 10.1109/TCSI.2020.3019413.

[165] Roadmap toward the 10 ps time-of-flight PET challenge

P. LecoqC. MorelJ. O. PriorD. VisvikisS. Gundacker  et al.

Physics In Medicine And Biology. 2020-11-07. DOI : 10.1088/1361-6560/ab9500.

[166] CMOS 3D-Stacked FSI Multi-Channel Digital SiPM for Time-of-Flight PET Applications

F. GramugliaA. A. MunteanE. Venialgo AraujoM.-J. LeeS. Lindner  et al.

2020-11-03. IEEE Nuclear Science Symposium, Boston, USA (virtual event), November 2-7, 2020. DOI : 10.1109/NSS/MIC42677.2020.9507833.

[167] Light Extraction Enhancement Techniques for Inorganic Scintillators

F. GramugliaS. FrascaE. RipicciniE. Venialgo AraujoV. Gâté  et al.

2020-11-03. IEEE Nuclear Science Symposium, Boston, USA (virtual event), November 2-7, 2020. DOI : 10.1109/NSS/MIC42677.2020.9507921.

[168] A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons

J. P. G. Van DijkB. PatraS. SubramanianX. XueN. Samkharadze  et al.

Ieee Journal Of Solid-State Circuits. 2020-11-01. DOI : 10.1109/JSSC.2020.3024678.

[169] Introduction to the Special Issue on the 2020 IEEE International Solid-State Circuits Conference (ISSCC)

P. MohseniE. Charbon

Ieee Journal Of Solid-State Circuits. 2020-11-01. DOI : 10.1109/JSSC.2020.3024381.

[170] Dynamic time domain near-infrared optical tomography based on a SPAD camera

J. JiangA. d. C. MataS. LindnerE. CharbonM. Wolf  et al.

Biomedical Optics Express. 2020-10-01. DOI : 10.1364/BOE.399387.

[171] Quanta burst photography

S. MaS. GuptaA. C. ÜlküC. BruschiniE. Charbon  et al.

SIGGRAPH, Boston, USA [Online], August 24-28, 2020.

[172] Design of a highly scalable TOF-PET detector: the UTOFPET project

E. CiarrocchiM. G. BisogniN. CamarlinghiP. CarraM. Morrocchi  et al.

European Molecular Imaging Meeting - EMIM 2020, [Online], August 24-28, 2020.

[173] Image reconstruction for novel time domain near infrared optical tomography: towards clinical applications

J. JiangA. D. C. MataS. LindnerC. ZhangE. Charbon  et al.

Biomedical Optics Express. 2020-08-01. DOI : 10.1364/BOE.398885.

[174] Quanta burst photography

S. MaS. GuptaA. C. UlkuC. BruschiniE. Charbon  et al.

ACM Transactions on Graphics. 2020-07-01. DOI : 10.1145/3386569.3392470.

[175] Image scanning microscopy with quantum and classical correlations

R. TenneD. OronY. SilberbergB.-e. RaphaelU. Rossman  et al.

ISSW 2020 2nd International SPAD Sensor Workshop, Edinburgh, UK (virtual), Jun 8-10, 2020.

[176] Efficient random number generation techniques for CMOS single-photon avalanche diode array exploiting fast time tagging units

A. StancoD. G. MarangonG. ValloneS. BurriE. Charbon  et al.

Physical Review Research. 2020-06-04. DOI : 10.1103/PhysRevResearch.2.023287.

[177] A Wideband Low-Power Cryogenic CMOS Circulator for Quantum Applications

A. RuffinoY. PengF. SebastianoM. BabaieE. Charbon

Ieee Journal Of Solid-State Circuits. 2020-05-01. DOI : 10.1109/JSSC.2020.2978020.

[178] High fill-factor miniaturized SPAD arrays with a guard-ring-sharing technique

K. MorimotoE. Charbon

Optics Express. 2020-04-27. DOI : 10.1364/OE.389216.

[179] Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications

K. MorimotoA. ArdeleanM.-L. WuA. C. UlkuI. M. Antolovic  et al.

Optica. 2020-04-20. DOI : 10.1364/OPTICA.386574.

[180] Multimodal imaging combining time-domain near-infrared optical tomography and continuous-wave fluorescence molecular tomography

W. RenJ. JiangA. D. C. MataA. KalyanovJ. Ripoll  et al.

Optics Express. 2020-03-30. DOI : 10.1364/OE.385392.

[181] Wide-field time-gated phasor analysis of visible fluorescence through highly scattering medium

R. AnkriA. BasuA. C. ÜlküC. BruschiniE. Charbon  et al.

64th Annual Meeting of the Biophysical Society, San Diego, CA, USA, February 15-19, 2020.

[182] Wide-Field Time-Gated SPAD Imager for Phasor-Based FLIM Applications

A. C. ÜlküA. ArdeleanI. M. AntolovicS. WeissE. Charbon  et al.

64th Annual Meeting of the Biophysical Society, San Diego, CA, USA, February 15-19, 2020.

[183] Wide-field time-gated SPAD imager for phasor-based FLIM applications

A. UlkuA. ArdeleanM. AntolovicS. WeissE. Charbon  et al.

Methods and Applications in Fluorescence. 2020-02-05. DOI : 10.1088/2050-6120/ab6ed7.

[184] Quantum imaging with SPAD arrays (Conference Presentation)

G. LubinR. TenneI. M. AntolovicE. CharbonC. Bruschini  et al.

Single Molecule Spectroscopy and Superresolution Imaging XIII, San Francisco, CA, USA, February 1-6, 2020.

[185] Realizing quantum image scanning microscopy with novel detectors

G. LubinR. TenneI. M. AntolovicE. CharbonC. Bruschini  et al.

Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology II, San Francisco, CA, USA, February 1-6, 2020.

[186] Cryo-CMOS Interfaces for Large-Scale Quantum Computers

F. SebastianoJ. P. G. van DijkP. A 't HartB. PatraJ. van Staveren  et al.

2020-01-01. IEEE International Electron Devices Meeting (IEDM), ELECTR NETWORK, Dec 12-18, 2020. DOI : 10.1109/IEDM13553.2020.9372075.

[187] A Cryo-CMOS Digital Cell Library for Quantum Computing Applications

E. SchriekF. SebastianoE. Charbon

Ieee Solid-State Circuits Letters. 2020-01-01. DOI : 10.1109/LSSC.2020.3017705.

[188] A Cryogenic CMOS Parametric Amplifier

M. MehrpooF. SebastianoE. CharbonM. Babaie

Ieee Solid-State Circuits Letters. 2020-01-01. DOI : 10.1109/LSSC.2019.2950186.

[189] A 10-to-12 GHz 5mW Charge-Sampling PLL Achieving 50 fsec RMS Jitter,-258.9 dB FOM and-65 dBc Reference Spur

J. GongF. SebastianoE. CharbonM. Babaie

2020-01-01. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), ELECTR NETWORK, Aug 04-06, 2020. p. 15-18. DOI : 10.1109/RFIC49505.2020.9218380.

[190] Direct time-of-flight depth sensor architecture and method for operating of such a sensor

P. PadmanabhanC. ZhangE. Charbon

EP3987305 ; EP3987305 ; WO2020253968 . 2020.

[191] Light microscope with reconfigurable sensor array

T. AnhutI. M. AntolovicD. SchwedtC. BruschiniE. Charbon

JP7478322 ; JP2024028812 ; JP2022537617 ; US2022206275 ; EP3953756 ; CN113874774 ; WO2020207571 . 2020.

[192] System, device and method for quantum correlation measurement with single photon avalanche diode arrays

I. M. AntolovicC. BruschiniE. CharbonG. LubinR. Tenne  et al.

US11982566 ; US2022170784 ; EP3948183 ; WO2020201849 . 2020.

[193] Reconfigurable logic circuit

N. MentensF. RegazzoniE. Charbon

EP3714545 ; US11309896 ; US2020366294 ; EP3714545 ; WO2019101660 ; GB201719355 . 2020.

[194] A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4x32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers

B. PatraJ. P. G. van DijkS. SubramanianA. CornaX. Xue  et al.

2020-01-01. IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, Feb 16-20, 2020. p. 304-306. DOI : 10.1109/ISSCC19947.2020.9063109.

[195] 19.3 A 200dB FoM 4-to-5GHz Cryogenic Oscillator with an Automatic Common-Mode Resonance Calibration for Quantum Computing Applications

J. GongY. ChenF. SebastianoE. CharbonM. Babaie

2020-01-01. IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, Feb 16-20, 2020. p. 308-310. DOI : 10.1109/ISSCC19947.2020.9062913.

[196] Cryo-CMOS for Analog/Mixed-Signal Circuits and Systems

J. van DijkP. 't HartG. KieneR. OverwaterP. Padalia  et al.

2020-01-01. IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, Mar 22-25, 2020. DOI : 10.1109/CICC48029.2020.9075882.

[197] Modeling for Ultra Low Noise CMOS Image Sensors

R. Capoccia

Lausanne, EPFL, 2020. DOI : 10.5075/epfl-thesis-7661.

[198] Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures

P. A. T. HartM. BabaieE. CharbonA. VladimirescuF. Sebastiano

Ieee Journal Of The Electron Devices Society. 2020-01-01. DOI : 10.1109/JEDS.2020.2988730.

[199] Time-Resolved NIROT 'Pioneer' System for Imaging Oxygenation of the Preterm Brain: Preliminary Results

A. Di Costanzo-MataJ. JiangS. LindnerL. AhnenC. Zhang  et al.

2020-01-01. 46th Annual Meeting of the International-Society-on-Oxygen-Transport-to-Tissue (ISOTT), Seoul, SOUTH KOREA, Jul 01-05, 2018. p. 347-354. DOI : 10.1007/978-3-030-34461-0_44.

[200] Light microscope with photon-counting detector elements and imaging method

T. AnhutI. M. AntolovicD. SchwedtC. BruschiniE. Charbon

JP7365649 ; JP2022527234 ; US2022075171 ; EP3914950 ; WO2020151838 . 2020.

[201] Quantum Transport in 40-nm MOSFETs a Deep-Cryogenic Temperatures

T.-Y. YangA. RuffinoJ. MichniewiczY. PengE. Charbon  et al.

IEEE Electron Device Letters. 2020-07-01. DOI : 10.1109/LED.2020.2995645.

[202] Characterization and Analysis of On-Chip Microwave Passive Components at Cryogenic Temperatures

B. PatraM. MehrpooA. RuffinoF. SebastianoE. Charbon  et al.

Ieee Journal Of The Electron Devices Society. 2020-01-01. DOI : 10.1109/JEDS.2020.2986722.

[203] Characterization and Modeling of Mismatch in Cryo-CMOS

P. A. '. HartM. BabaieE. CharbonA. VladimirescuF. Sebastiano

Ieee Journal Of The Electron Devices Society. 2020-01-01. DOI : 10.1109/JEDS.2020.2976546.

[204] Single-Photon, Time-Gated, Phasor-Based Fluorescence Lifetime Imaging through Highly Scattering Medium

R. AnkriA. BasuA. C. UlkuC. BruschiniE. Charbon  et al.

Acs Photonics. 2020-01-01. DOI : 10.1021/acsphotonics.9b00874.

[205] Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications

P. PadmanabhanC. ZhangE. Charbon

Sensors. 2019-12-11. DOI : 10.3390/s19245464.

[206] Cryo-CMOS Electronics for Quantum Computing Applications

E. Charbon

2019-11-18. IEEE 45th European Solid State Circuits Conference - ESSCIRC 2019, Cracow, Poland, 23–26 September, 2019. p. 1-6. DOI : 10.1109/ESSCIRC.2019.8902896.

[207] A Modular, Direct Time-of-Flight Depth Sensor in 45/65-nm 3-D-Stacked CMOS Technology

A. R. XimenesP. PadmanabhanM.-J. LeeY. YamashitaD.-N. Yaung  et al.

IEEE Journal of Solid-State Circuits. 2019-11-01. DOI : 10.1109/JSSC.2019.2938412.

[208] UTOFPET: a highly scalable TOF-PET detector concept

N. BelcariM. G. BisogniN. CamarlinghiP. CarraE. Ciarrocchi  et al.

2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, Manchester, UK, Oct 26 - Nov 2, 2019.

[209] Quantum correlation measurement with single photon avalanche diode arrays

G. LubinR. TenneI. M. AntolovicE. CharbonC. Bruschini  et al.

Optics Express. 2019-10-28. DOI : 10.1364/OE.27.032863.

[210] A Close-in LiDAR for Diffusive Media based on a 32 × 32 CMOS SPAD Image Sensor

S. LindnerC. ZhangA. KalyanovM. WolfC. Bruschini  et al.

2019-10-01. International Image Sensor Workshop (IISW), Snowbird, Utah, USA, June 23-27, 2019.

[211] Hybrid superconductor-semiconductor electronics

S. FrascaE. Charbon

Nature Electronics. 2019-10-01. DOI : 10.1038/s41928-019-0319-x.

[212] Single-photon avalanche diode imagers in biophotonics: review and outlook

C. BruschiniH. HomulleI. M. AntolovicS. BurriE. Charbon

Light-Science & Applications. 2019-09-18. DOI : 10.1038/s41377-019-0191-5.

[213] Quantum imaging with SPAD arrays

G. LubinR. TenneI. M. AntolovicE. CharbonC. Bruschini  et al.

Optics at the Nanoscale (ONS’19), Capri, Italy, September 9-11, 2019.

[214] Toward a Full-Flexible and Fast-Prototyping TOF-PET Block Detector Based on TDC-on-FPGA

E. VenialgoN. LusardiF. GarzettiA. GeraciS. E. Brunner  et al.

Ieee Transactions On Radiation And Plasma Medical Sciences. 2019-09-01. DOI : 10.1109/TRPMS.2018.2874358.

[215] Time Domain NIRS Optode based on Null/Small Source-Detector Distance for Wearable Applications

S. SahaS. BurriC. BruschiniE. CharbonF. Lesage  et al.

2019-08-01. 2019 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, April 14-17, 2019. p. 1-8. DOI : 10.1109/CICC.2019.8780320.

[216] A Bit Too Much? High Speed Imaging from Sparse Photon Counts

P. ChandramouliS. BurriC. BruschiniE. CharbonA. Kolb

2019-06-27. 2019 IEEE International Conference on Computational Photography (ICCP), Tokyo, Japan, May 15-17, 2019. p. 1-9. DOI : 10.1109/ICCPHOT.2019.8747325.

[217] LiDAR Fundamentals

C. BruschiniP. PadmanabhanE. Charbon

SENSE Detector School, Schloss Ringberg, Kreuth am Tegernsee, Germany, June 19-22, 2019.

[218] First Near-Ultraviolet- and Blue-Enhanced Backside-Illuminated Single-Photon Avalanche Diode Based on Standard SOI CMOS Technology

M.-J. LeeP. SunG. PandraudC. BruschiniE. Charbon

IEEE Journal of Selected Topics in Quantum Electronics. 2019-05-24. DOI : 10.1109/JSTQE.2019.2918930.

[219] A single-photon camera with 97 kfps time-gated 24 Gphotons/s 512 x 512 SPAD pixels for computational imaging and time-of-flight vision

K. MorimotoA. C. ÜlküI. M. AntolovicC. BruschiniE. Charbon

IEEE International Conference on Computational Photography 2019, Tokyo, Japan, May 15-17, 2019.

[220] A 6.5-GHz Cryogenic All-Pass Filter Circulator in 40-nm CMOS for Quantum Computing Applications

A. RuffinoY. PengF. SebastianoM. BabaieE. Charbon

2019-05-07. The 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2019), Boston, MA, USA, 2-4 June 2019. p. 107-110. DOI : 10.1109/RFIC.2019.8701836.

[221] A 23-pixel SPAD array with 45% PDE, 140 cps DCR and 123 ps timing jitter for advanced scanning techniques

I. M. AntolovicC. BruschiniE. Charbon

Focus on Microscopy 2019, London, UK, April 14-17, 2019.

[222] A 30-frames/s, 252 x 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming

C. ZhangS. LindnerI. M. AntolovicJ. M. PaviaM. Wolf  et al.

Ieee Journal Of Solid-State Circuits. 2019-04-01. DOI : 10.1109/JSSC.2018.2883720.

[223] LiDAR and 3D-Stacked Technologies for Automotive, Consumer and Biomedical Applications

C. BruschiniP. PadmanabhanE. Charbon

Image Sensors Europe, London, Mar 12 2019.

[224] High-dynamic-range imaging with photon-counting arrays (Conference Presentation)

I. M. AntolovićC. BruschiniE. Charbon

Quantum Sensing and Nano Electronics and Photonics XVI, San Francisco, CA, USA, February 2-7, 2019.

[225] Optical-stack optimization for improved SPAD photon detection efficiency

I. M. AntolovićA. C. UlkuE. KizilkanS. LindnerF. Zanella  et al.

2019-02-22. Quantum Sensing and Nano Electronics and Photonics XVI, San Francisco, CA, USA, February 2-7, 2019. p. 99. DOI : 10.1117/12.2511301.

[226] Phasor-based widefield FLIM using a gated 512×512 single-photon SPAD imager

A. C. UlkuC. BruschiniI. M. AntolovicS. WeissX. Michalet  et al.

2019-02-22. Multiphoton Microscopy in the Biomedical Sciences XIX, San Francisco, CA, USA, 2-7 February, 2019. p. 21. DOI : 10.1117/12.2511148.

[227] Fluorescence lifetime imaging with a single-photon SPAD array using long overlapping gates: an experimental and theoretical study

A. ArdeleanA. C. UlkuX. MichaletE. CharbonC. Bruschini

2019-02-22. Multiphoton Microscopy in the Biomedical Sciences XIX, San Francisco, CA, USA, 2-7 February 2019. p. 33. DOI : 10.1117/12.2511287.

[228] Measuring quantum correlations with an on-chip SPAD array

R. TenneG. LubinI. M. AntolovicE. CharbonC. Bruschini  et al.

Single Molecule Spectroscopy and Superresolution Imaging XII, San Francisco, CA, USA, 2-7 February, 2019.

[229] Plug-and-play TOF-PET Module Readout Based on TDC-on-FPGA and Gigabit Optical Fiber Network

F. GarzettiS. SalgaroE. VenialgoN. LusardiN. Corna  et al.

2019-01-01. IEEE Nuclear Science Symposium / Medical Imaging Conference (NSS/MIC), Manchester, ENGLAND, Oct 26-Nov 02, 2019. DOI : 10.1109/NSS/MIC42101.2019.9059966.

[230] Photoluminescence Lifetime Sensor Pixels using SPADs and Silicon LEDs in Commercial CMOS

R. J. S. M. GuerreroA. MurrayE. Charbon

2019-01-01. 18th IEEE Sensors Conference, Montreal, CANADA, Oct 27-30, 2019. DOI : 10.1109/SENSORS43011.2019.8956921.

[231] Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures

P. A. 't HartM. BabaieE. CharbonA. VladimirescuF. Sebastiano

2019-01-01. 49th European Solid-State Device Research Conference (ESSDERC), Cracow, POLAND, Sep 23-26, 2019. p. 98-101. DOI : 10.1109/ESSDERC.2019.8901745.

[232] Voltage References for the Ultra-Wide Temperature Range from 4.2 K to 300 K in 40-nm CMOS

J. van StaverenC. G. AlmudeverG. ScappucciM. VeldhorstM. Babaie  et al.

2019-01-01. IEEE 45th European Solid State Circuits Conference (ESSCIRC), Cracow, POLAND, Sep 23-26, 2019. p. 37-40. DOI : 10.1109/ESSCIRC.2019.8902861.

[233] SPINE (SPIN Emulator) - A Quantum-Electronics Interface Simulator

J. van DijkA. VladimirescuM. BabaieE. CharbonF. Sebastiano

2019-01-01. 8th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Otranto, ITALY, Jun 13-14, 2019. p. 23-28. DOI : 10.1109/IWASI.2019.8791334.

[234] The role of cryo-CMOS in quantum computers

E. Charbon

2019-01-01. 8th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Otranto, ITALY, Jun 13-14, 2019. p. 181-181. DOI : 10.1109/IWASI.2019.8791325.

[235] Photon detecting 3d imaging sensor device

A. Ronchini XimenesP. PadmanabhanE. Charbon

US2021072360 ; EP3749979 ; WO2019154513 . 2019.

[236] Oscillator arrangement for time-to-digital converter for large array of time-of-flight image sensor devices

A. Ronchini XimenesP. PadmanabhanE. Charbon

US10637485 ; US2019305784 . 2019.

[237] Analysis on Noise Requirements of RF Front-End Circuits for Spin Qubit Readout

Y. PengA. RuffinoE. Charbon

2019. 25th International Conference on Noise and Fluctuations (ICNF 2019), EPFL Neuchâtel campus - Neuchâtel, Switzerland, 18 - 21 June 2019. DOI : 10.5075/epfl-ICLAB-ICNF-269250.

[238] A 512 x 512 SPAD Image Sensor With Integrated Gating for Widefield FLIM

A. C. UlkuC. BruschiniI. M. AntolovicY. KuoR. Ankri  et al.

IEEE Journal of Selected Topics in Quantum Electronics. 2019-01-01. DOI : 10.1109/JSTQE.2018.2867439.

[239] Tradeoffs in Cherenkov Detection for Positron Emission Tomography

A. MunteanF. GramugliaE. VenialgoC. BruschiniE. Charbon

2018-11-17. 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, Australia, 10-17 Nov. 2018. p. 1-2. DOI : 10.1109/NSSMIC.2018.8824430.

[240] A Fully Integrated State-of-the-Art Analog SiPM with on-chip Time Conversion

A. MunteanA. SachdevaE. VenialgoS. GnecchiD. Palubiak  et al.

2018-11-17. 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC). p. 1-3. DOI : 10.1109/NSSMIC.2018.8824662.

[241] A Sensor Network Architecture for Digital SiPM-Based PET Systems

C. BruschiniC. VeerappanF. GramugliaM. BijwaardZ. Papp  et al.

Ieee Transactions On Radiation And Plasma Medical Sciences. 2018-11-01. DOI : 10.1109/TRPMS.2018.2866953.

[242] A CMOS SPAD Imager with Collision Detection and 128 Dynamically Reallocating TDCs for Single-Photon Counting and 3D Time-of-Flight Imaging

C. ZhangS. LindnerI. M. AntolovicM. WolfE. Charbon

Sensors. 2018-11-01. DOI : 10.3390/s18114016.

[243] Mutually Coupled Time-to-Digital Converters (TDCs) for Direct Time-of-Flight (dTOF) Image Sensors

A. R. XimenesP. PadmanabhanE. Charbon

Sensors. 2018-10-01. DOI : 10.3390/s18103413.

[244] Progress in single-photon avalanche diode image sensors in standard CMOS: From two-dimensional monolithic to three-dimensional-stacked technology

M.-J. LeeE. Charbon

Japanese Journal Of Applied Physics. 2018-10-01. DOI : 10.7567/JJAP.57.1002A3.

[245] Cryogenic low-dropout voltage regulators for stable low-temperature electronics

H. HomulleE. Charbon

Cryogenics. 2018-10-01. DOI : 10.1016/j.cryogenics.2018.08.006.

[246] (Digital) Electronics & Systems for Advanced Time-of-Flight PET

C. BruschiniE. Venialgo AraujoE. Charbon

ToM - Topics on Microelectronics lectures, University of Milan-Bicocca, Italy, Sept 18, 2018.

[247] FPGA Design Techniques for Stable Cryogenic Operation

H. HomulleS. VisserB. PatraE. Charbon

ArXiv. 2018-08-13.

[248] The impact of classical control electronics on qubit fidelity

J. P. van DijkE. KawakamiR. N. SchoutenM. VeldhorstL. M. Vandersypen  et al.

ArXiv. 2018-03-16.

[249] A 256x256 45/65nm 3D-Stacked SPAD-Based Direct TOF Image Sensor for LiDAR Applications with Optical Polar Modulation for up to 18.6dB Interference Suppression

A. R. XimenesP. PadmanabhanM.-J. LeeY. YamashitaD. N. Yaung  et al.

2018-01-01. 65th IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, Feb 11-15, 2018. p. 96-98. DOI : 10.1109/ISSCC.2018.8310201.

[250] Interfacing Qubits via Cryo-CMOS Front Ends

A. RuffinoY. PengE. Charbon

2018-01-01. IEEE International Conference on Integrated Circuits, Technologies and Applications (IEEE ICTA), Beijing, PEOPLES R CHINA, Nov 21-23, 2018. p. 42-44. DOI : 10.1109/CICTA.2018.8705712.

[251] 3D-Stacked CMOS SPAD Image Sensors: Technology and Applications

E. CharbonC. BruschiniM.-J. Lee

2018-01-01. 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, FRANCE, Dec 09-12, 2018. p. 1-4. DOI : 10.1109/ICECS.2018.8617983.

[252] Rethinking Secure FPGAs: Towards a Cryptography-friendly Configurable Cell Architecture and its Automated Design Flow

N. MentensE. CharbonF. Regazzoni

2018-01-01. 26th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Boulder, CO, Apr 29-May 01, 2018. p. 215-215. DOI : 10.1109/FCCM.2018.00049.

[253] Monolithic SPAD Arrays for High-Performance, Time-Resolved Single-Photon Imaging

C. BruschiniS. BurriS. LindnerA. C. UlkuC. Zhang  et al.

2018-01-01. International Conference on Optical MEMS and Nanophotonics (OMN), Lausanne, SWITZERLAND, Jul 29-Aug 02, 2018. p. 183-184. DOI : 10.1109/OMN.2018.8454654.

[254] A Co-design Methodology for Scalable Quantum Processors and their Classical Electronic Interface

J. van DijkA. VladimirescuM. BabaieE. CharbonF. Sebastiano

2018-01-01. Design, Automation and Test in Europe Conference and Exhibition (DATE), Dresden, GERMANY, Mar 19-23, 2018. p. 573-576. DOI : 10.23919/DATE.2018.8342072.

[255] A 5 Gigaevent-per-second SPAD Array for Super Resolution Microscopy

I. M. AntolovicA. C. ÜlküC. BruschiniE. Charbon

International Conference on Nanoscopy, ICON 2018, Bielefeld, Germany.

[256] Light Extraction Enhancement in Scintillation Crystals Using Thin Film Coatings

F. GramugliaN. M. A. DescharmesE. VenialgoH. P. HerzigE. Charbon  et al.

2018. IEEE Nuclear Science Symposium, Sydney, Australia, Nov. 2018. DOI : 10.1109/NSSMIC.2018.8824270.

[257] SPAD arrays: from single - molecule detection to wide - field phasor fluorescence lifetime imaging

X. MichaletA. IngargiolaM. SegalS. WeissA. Gulinatti  et al.

1st International SPAD Sensor Workshop ISSW, Les Diablerets, Switzerland, February 2018.

[258] Single-Photon Detectors for Next-Generation Biomedical Applications

M.-J. LeeC. BruschiniE. Charbon

Europe-Korea Conference on Science and Technology (EKC), Glasgow, UK, August 20-24, 2018.

[259] Applications of a reconfigurable SPAD line imager (Conference Presentation)

S. BurriC. BruschiniE. Charbon

Photonic Instrumentation Engineering V, San Francisco, CA, USA.

[260] Hexagonal SPAD arrays for image scanning microscopy using pixel reassignment

I. M. AntolovicC. BruschiniS. BurriR. A. HoebeE. Charbon

Single Molecule Spectroscopy and Superresolution Imaging XI.

[261] CMOS-Based Single-Photon Detectors: Technology and Applications

M. J. LeeC. BruschiniE. Charbon

2018. 23rd OptoElectronics and Communications Conference OECC2018, Jeju, Korea, July 2-6, 2018. DOI : 10.1109/OECC.2018.8730044.

[262] Time-resolved Single-photon Detector Arrays for High Resolution Near-infrared Optical Tomography

S. A. Lindner

Lausanne, EPFL, 2018. DOI : 10.5075/epfl-thesis-8815.

[263] Dynamic range extension for photon counting arrays

I. M. AntolovicC. BruschiniE. Charbon

Optics Express. 2018-08-20. DOI : 10.1364/OE.26.022234.

[264] Performance characterization of Altera and Xilinx 28 nm FPGAs at cryogenic temperatures

H. HomulleE. Charbon

2018-02-05. 2017 International Conference on Field Programmable Technology (ICFPT), Melbourne, VIC, Australia, December 11-13, 2017. p. 25-31. DOI : 10.1109/FPT.2017.8280117.

[265] Flexible Single-Photon Image Sensors, CMOS Circuits for Biological Sensing and Processing

P. SunR. IshiharaE. Charbon

CMOS Circuits for Biological Sensing and Processing; Springer International Publishing, 2018. p. 47-75.

[266] Design techniques for a stable operation of cryogenic field-programmable gate arrays

H. HomulleS. VisserB. PatraE. Charbon

Review of Scientific Instruments. 2018-01-05. DOI : 10.1063/1.5004484.

[267] The Cryogenic Temperature Behavior of Bipolar, MOS, and DTMOS Transistors in Standard CMOS

H. HomulleL. SongE. CharbonF. Sebastiano

IEEE Journal of the Electron Devices Society. 2018-01-25. DOI : 10.1109/JEDS.2018.2798281.

[268] A time-gated large-array SPAD camera for picosecond resolution real-time FLIM

A. C. UlkuC. BruschiniS. WeissX. MichaletE. Charbon

2018-03-14. Proceedings Volume 10498, Multiphoton Microscopy in the Biomedical Sciences XVIII. p. 21. DOI : 10.1117/12.2288170.

[269] Applications of a reconfigurable SPAD line imager

S. BurriC. BruschiniE. Charbon

2018-03-14. SPIE OPTO, San Francisco, CA, United States, 2018. p. 3. DOI : 10.1117/12.2289620.

[270] Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures

R. M. IncandelaL. SongH. HomulleE. CharbonA. Vladimirescu  et al.

IEEE Journal of the Electron Devices Society. 2018-04-02. DOI : 10.1109/JEDS.2018.2821763.

[271] A Novel 32 x 32, 224 Mevents/s Time Resolved SPAD Image Sensor for Near-Infrared Optical Tomography

S. LindnerC. ZhangI. AntolovicA. KalyanovJ. Jiang  et al.

2018. Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), Hollywood, Florida, USA, April 3–6, 2018. p. JTh5A.6. DOI : 10.1364/TRANSLATIONAL.2018.JTh5A.6.

[272] Time Domain Near-Infrared Optical Tomography with Time-of-Flight SPAD Camera: The New Generation

A. KalyanovJ. JiangS. LindnerL. AhnenA. di Costanzo  et al.

2018. Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), Tucson, Arizona, USA, 15-19 April, 2019. p. OF4D.5. DOI : 10.1364/OTS.2018.OF4D.5.

[273] Widefield High Frame Rate Single-Photon SPAD Imagers for SPIM-FCS

J. BuchholzJ. KriegerC. BruschiniS. BurriA. Ardelean  et al.

Biophysical Journal. 2018-05-22. DOI : 10.1016/j.bpj.2018.04.029.

[274] High-Performance Back-Illuminated Three-Dimensional Stacked Single-Photon Avalanche Diode Implemented in 45-nm CMOS Technology

M.-J. LeeA. R. XimenesP. PadmanabhanT.-J. WangK.-C. Huang  et al.

IEEE Journal of Selected Topics in Quantum Electronics. 2018-04-16. DOI : 10.1109/JSTQE.2018.2827669.

[275] High voltage metal oxide thin film transistors to drive arrays of dielectric elastomer actuators

A. P. H. Marette

Lausanne, EPFL, 2018. DOI : 10.5075/epfl-thesis-8738.

[276] A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology

P. PadmanabhanB. HancockS. NikzadL. BellK. Kroep  et al.

Sensors. 2018-02-03. DOI : 10.3390/s18020449.

[277] Towards a fully digital state-of-the-art analog SiPM

A. MunteanE. VenialgoS. GnecchiC. JacksonE. Charbon

2017-10-28. 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). p. 1-4. DOI : 10.1109/NSSMIC.2017.8533036.

[278] Photon-Counting Image Sensors

Basel: MDPI.

[279] 15.5 Cryo-CMOS circuits and systems for scalable quantum computing

E. CharbonF. SebastianoM. BabaieA. VladimirescuM. Shahmohammadi  et al.

2017-03-06. 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, February 5-9, 2017. p. 264-265. DOI : 10.1109/ISSCC.2017.7870362.

[280] EE3: Quantum engineering: Hype, spin or reality?

E. Charbon

2017-03-06. 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, February 5-9, 2017. p. 522-522. DOI : 10.1109/ISSCC.2017.7870487.

[281] Ten years of biophotonics single-photon SPAD imager applications: retrospective and outlook, Multiphoton Microscopy in the Biomedical Sciences XVII

C. BruschiniH. HomulleE. Charbon

2017-02-21. SPIE BiOS, San Francisco, California, United States, January, 2017. p. 100691S. DOI : 10.1117/12.2256247.

[282] Fluorescence lifetime imaging using a single photon avalanche diode array sensor (Conference Presentation), Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV

P. M. WargockiD. J. SpenceE. M. GoldysE. CharbonC. E. Bruschini  et al.

Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV, SPIE Photonics.

[283] All-Digital, Quantum Biomedical Imaging

C. BruschiniH. HomulleE. Charbon

Emerging Technologies 2017 (ETCMOS 2017), Warsaw, Poland, May 28-30, 2017.

[284] A decade of single-photon SPAD imagers in the biomedical sciences

C. BruschiniH. HomulleE. Charbon

New Developments In Photodetection (NDIP 2017), Tours, France, July 3-7 2017.

[285] Single-photon SPAD imagers in the biomedical sciences – where do we stand?

C. BruschiniH. A. R. HomulleE. Charbon

EPIC Biophotonics Workshop: Towards In Vivo Imaging, Amsterdam, The Netherlands, November 30 - December 1, 2017.

[286] Towards 10ps SPTR and Ultra-Low DCR in SiPMs Through the Combination of Microlenses and Photonic Crystals

F. GramugliaM.-J. LeeE. VenialgoC. BruschiniE. Charbon

2017. 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Atlanta, GA, USA, October 21-28, 2017. p. 1-3. DOI : 10.1109/NSSMIC.2017.8532951.

[287] Imaging free and bound NADH towards cancer tissue detection using FLIM system based on SPAD array

P. M. WargockiS. BurriC. BruschiniI. M. AntolovicE. Charbon  et al.

2017-10-30. 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, June 25-29, 2017. p. 1-1. DOI : 10.1109/CLEOE-EQEC.2017.8087784.

[288] A Radiation-Tolerant, high performance SPAD for SiPMs implemented in CMOS technology

Y. LiC. VeerappanM.-J. LeeL. WenQ. Guo  et al.

2017-10-19. 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Strasbourg, France, October 29 - November 6, 2016. p. 1-4. DOI : 10.1109/NSSMIC.2016.8069762.

[289] Characterization of bipolar transistors for cryogenic temperature sensors in standard CMOS

L. SongH. HomulleE. CharbonF. Sebastiano

2017-01-09. 2016 IEEE SENSORS, Orlando, FL, USA, October 30 - November 3, 2016. p. 1-3. DOI : 10.1109/ICSENS.2016.7808759.

[290] A Flexible 32x32 Dual-Side Single-Photon Image Sensor

P. SunJ. WengR. IshiharaE. Charbon

IISW, Hiroshima, Japan.

[291] A 512 × 512 SPAD Image Sensor with Built-In Gating for Phasor Based Real-Time siFLIM

A. C. ÜlküC. BruschiniX. MichaletS. WeissE. Charbon

IISW, Hiroshima, Japan.

[292] A reconfigurable cryogenic platform for the classical control of quantum processors

H. HomulleS. VisserB. PatraG. FerrariE. Prati  et al.

Review of Scientific Instruments. 2017-04-07. DOI : 10.1063/1.4979611.

[293] Cryogenic CMOS interfaces for quantum devices

F. SebastianoH. A. HomulleJ. P. van DijkR. M. IncandelaB. Patra  et al.

2017-07-13. 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Vieste, Italy, June 15-16, 2017. p. 59-62. DOI : 10.1109/IWASI.2017.7974215.

[294] Cryo-CMOS Electronic Control for Scalable Quantum Computing

F. SebastianoH. HomulleB. PatraR. IncandelaJ. van Dijk  et al.

2017. DAC '17 Proceedings of the 54th Annual Design Automation Conference 2017, Austin, TX, USA, June 18 - 22, 2017. p. 1-6. DOI : 10.1145/3061639.3072948.

[295] Fluorescence lifetime imaging using a single photon avalanche diode array sensor

P. M. WargockiD. J. SpenceE. M. GoldysE. CharbonC. E. Bruschini  et al.

2017-06-19. Proceedings Volume 10068, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV, San Francisco, CA, United States. p. 100680W. DOI : 10.1117/12.2253579.

[296] Quantum information density scaling and qubit operation time constraints of CMOS silicon-based quantum computer architectures

D. RottaF. SebastianoE. CharbonE. Prati

npj Quantum Information. 2017-06-26. DOI : 10.1038/s41534-017-0023-5.

[297] A quantum-implementable neural network model

J. ChenL. WangE. Charbon

Quantum Information Processing. 2017-08-24. DOI : 10.1007/s11128-017-1692-x.

[298] A High-PDE, Backside-Illuminated SPAD in 65/40-nm 3D IC CMOS Pixel With Cascoded Passive Quenching and Active Recharge

S. LindnerS. PellegriniY. HenrionB. RaeM. Wolf  et al.

IEEE Electron Device Letters. 2017-09-22. DOI : 10.1109/LED.2017.2755989.

[299] CubeSat quantum communications mission

D. K. OiA. LingG. ValloneP. VilloresiS. Greenland  et al.

EPJ Quantum Technology. 2017-04-17. DOI : 10.1140/epjqt/s40507-017-0060-1.

[300] Cryo-CMOS Circuits and Systems for Quantum Computing Applications

B. PatraR. M. IncandelaJ. P. G. van DijkH. A. R. HomulleL. Song  et al.

IEEE Journal of Solid-State Circuits. 2017-09-13. DOI : 10.1109/JSSC.2017.2737549.

[301] LinoSPAD: A Compact Linear SPAD Camera System with 64 FPGA-Based TDC Modules for Versatile 50 ps Resolution Time-Resolved Imaging

S. BurriC. BruschiniE. Charbon

Instruments. 2017-12-05. DOI : 10.3390/instruments1010006.

[302] A CMOS Front-end for GaN-based UV Imaging

P. PadmanabhanB. HancockS. NikzadL. BellK. Kroep  et al.

2017. International Image Sensor Workshop, Hiroshima, Japan, May 30- June 2, 2017.

[303] Column-Parallel Dynamic TDC Reallocation in SPAD Sensor Module Fabricated in 180nm CMOS for Near Infrared Optical Tomography

S. LindnerC. ZhangI. M. AntolovicJ. Mata PaviaM. Wolf  et al.

2017. International Image Sensor Workshop, Hiroshima, Japan, May 30th - June 2nd, 2017.

[304] SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking

I. M. AntolovicS. BurriC. BruschiniR. A. HoebeE. Charbon

Scientific Reports. 2017. DOI : 10.1038/srep44108.

[305] Pulsed light optical rangefinder

C. NiclassE. CharbonM. SogaH. Yanagihara

EP2446301 ; US9417326 ; JP5681176 ; JP2012530917 ; EP2446301 ; US2012075615 ; WO2010149593 ; GB0910717 ; GB0910744 . 2016-08-16.

[306] In-vivo fluorescence lifetime imaging to differentiate bound from unbound cRGD-coupled NIR tracers

P. L. StegehuisM. C. BoonstraK. E. de RooijH. HomulleC. Bruschini  et al.

European Society for Molecular Imaging (EMIM 2016), Utrecht, Netherlands.

[307] Microscale Mapping of the Photon Detection Probability of SPADs

E. Gros d'AillonL. VergerD. A. B. BonifacioE. CharbonC. Bruschini  et al.

IEEE Nuclear Science Symposium and Medical Imaging Conference, Strasbourg, France, October 29 - November 5, 2016.

[308] First Characterization of the SPADnet-II Sensor: a Smart Digital Silicon Photomultiplier for ToF-PET Applications

E. Gros d'AillonL. VergerD. A. B. BonifacioE. CharbonC. Bruschini  et al.

IEEE Nuclear Science Symposium and Medical Imaging Conference, Strasbourg, France, October 29 - November 5, 2016.

[309] All-digital, single-photon image sensors for microscopy and biomedical applications

E. CharbonI. M. AntolovicS. BurriC. Bruschini

International Conference on Nanoscopy, ICON Europe 2016, Basel, Switzerland, June 7-10, 2016.

[310] SPAD IMAGERS FOR CHARACTERIZATION OF ULTRA FAST DYES FOR SUPER RESOLUTION LOCALIZATION MICROSCOPY

I. M. AntolovicS. BurriC. BruschiniR. A. HoebeE. Charbon

Focus on Microscopy 2016 (FOM 2016), Taiwan.

[311] (Challenges in) Time Correlated Single Photon Counting Imagers

C. BruschiniE. Charbon

SIGNAL 2016, Lisbon, Portugal, June 26-30, 2016.

[312] Time Correlated Single Photon Counting Imagers for Biomedical Applications

C. BruschiniE. Charbon

ICFO, Barcelona, Spain, July 29, 2016.

[313] Advances in (digital) Single-Photon Detectors for PET

C. BruschiniE. Charbon

MediSens, London, UK, December 13-14, 2016.

[314] A 1 GSa/s, Reconfigurable Soft-core FPGA ADC

S. VisserH. HomulleE. Charbon

2016. FPGA '16 Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, February 21 - 23, 2016. p. 281-281. DOI : 10.1145/2847263.2847310.

[315] Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration

P. SunR. IshiharaE. Charbon

Optics Express. 2016. DOI : 10.1364/OE.24.003734.

[316] CryoCMOS hardware technology a classical infrastructure for a scalable quantum computer

H. HomulleS. VisserB. PatraG. FerrariE. Prati  et al.

2016. CF '16 Proceedings of the ACM International Conference on Computing Frontiers, Como, Italy, May 16 - 19, 2016. p. 282-287. DOI : 10.1145/2903150.2906828.

[317] Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

S. NikzadM. HoenkA. JewellJ. HennessyA. Carver  et al.

Sensors. 2016-06-21. DOI : 10.3390/s16060927.

[318] A Cryogenic 1 GSa/s, Soft-Core FPGA ADC for Quantum Computing Applications

H. HomulleS. VisserE. Charbon

IEEE Transactions on Circuits and Systems I: Regular Papers. 2016-10-20. DOI : 10.1109/TCSI.2016.2599927.

[319] Designing Photon-Counting, Wide-spectrum Optical Radiation Detectors in CMOS-Compatible Technologies

E. CharbonC. Veerappan

Analog Electronics for Radiation Detection; Productivity Press, 2016. p. 185-202.

[320] LinoSPAD: a time-resolved 256x1 CMOS SPAD line sensor system featuring 64 FPGA-based TDC channels running at up to 8.5 giga-events per second

S. BurriH. HomulleC. BruschiniE. Charbon

2016. Conference on Optical Sensing and Detection IV, Brussels, BELGIUM, APR 03-07, 2016. p. 98990D. DOI : 10.1117/12.2227564.

[321] Ultra Low Noise CMOS Image Sensors

A. Boukhayma

Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-7248.

[322] Analyzing blinking effects in super resolution localization microscopy with single-photon SPAD imagers

I. M. AntolovicS. BurriC. BruschiniR. HoebeE. Charbon

2016. Single Molecule Spectroscopy and Superresolution Imaging IX, San Francisco, CA, FEB 13-14, 2016. p. 971406. DOI : 10.1117/12.2211430.

[323] Photon-Counting Arrays for Time-Resolved Imaging

I. M. AntolovicS. BurriR. A. HoebeY. MaruyamaC. Bruschini  et al.

Sensors. 2016. DOI : 10.3390/s16071005.

[324] Challenges and Solutions to Next-Generation Single-Photon Imagers

S. Burri

Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-7136.

[325] CMOS-Compatible PureGaB Ge-on-Si APD Pixel Arrays

A. SammakM. AminianL. K. NanverE. Charbon

Ieee Transactions On Electron Devices. 2016. DOI : 10.1109/Ted.2015.2457241.

[326] Nonuniformity Analysis of a 65-kpixel CMOS SPAD Imager

I. M. AntolovicS. BurriC. BruschiniR. HoebeE. Charbon

IEEETransactions On Electron Devices. 2016. DOI : 10.1109/Ted.2015.2458295.

[327] A 5x5 SPADnet Digital SiPM Tile for PET Applications

L. GaspariniL. H. C. BragaN. MassariM. PerenzoniD. Stoppa  et al.

2015. 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, CA, USA, October 31 - November 7, 2015.

[328] IMAGING FLUORESCENCE CORRELATION: NOVEL RESULTS ON NEW IMAGE SENSORS ( SPAD ARRAYS ) AND A COMPREHENSIVE NEW SOFTWARE PACKAGE (QUICKFIT 3.0)

J. KriegerJ. BuchholzS. BurriC. BruschiniE. Charbon  et al.

Focus On Microscopy Conference (FOM 2015), Goettingen, Germany.

[329] SUPER RESOLUTION WITH SPAD IMAGERS

I. M. AntolovicS. BurriC. BruschiniR. HoebeE. Charbon

Focus on Microscopy (FOM 2015), Göttingen, Germany, 2015.

[330] Fundamentals of a scalable network in SPADnet-based PET systems

M. BijwaardC. VeerappanC. BruschiniE. Charbon

2015. 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, CA, USA, October 31 - November 7, 2015. p. 1-3. DOI : 10.1109/NSSMIC.2015.7581985.

[331] A Low Dark Count p-i-n Diode Based SPAD in CMOS Technology

C. VeerappanE. Charbon

IEEE Transactions on Electron Devices. 2015-09-18. DOI : 10.1109/TED.2015.2475355.

[332] Advances in digital SiPMs and their application in biomedical imaging

D. R. SchaartE. CharbonT. FrachV. Schulz

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2015-10-28. DOI : 10.1016/j.nima.2015.10.078.

[333] Potential applications of electron emission membranes in medicine

Y. BilevychS. E. BrunnerH. W. ChanE. CharbonH. van der Graaf  et al.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2015-11-02. DOI : 10.1016/j.nima.2015.10.084.

[334] A 1 x 400 Backside-Illuminated SPAD Sensor With 49.7 ps Resolution, 30 pJ/Sample TDCs Fabricated in 3D CMOS Technology for Near-Infrared Optical Tomography

J. M. PaviaM. ScandiniS. LindnerM. WolfE. Charbon

Ieee Journal Of Solid-State Circuits. 2015. DOI : 10.1109/Jssc.2015.2467170.

[335] Fluorescence lifetime imaging to differentiate bound from unbound ICG-cRGD both in vitro and in vivo

P. L. StegehuisM. C. BoonstraK. E. De RooijF. E. PowolnyR. Sinisi  et al.

2015. Conference on Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XIII, San Francisco, CA, FEB 08-10, 2015. DOI : 10.1117/12.2078644.

[336] Near-Infrared Optical Tomography with Single-Photon Avalanche Diode Image Sensors

J. Mata Pavia

Lausanne, EPFL, 2015. DOI : 10.5075/epfl-thesis-6481.

[337] SINGLE PHOTON AVALANCHE DIODE ARRAYS FOR SINGLE PLANE ILLUMINATION FLUORESCENCE CORRELATION SPECTROSCOPY

J. BuchholzJ. KriegerS. BurriC. BruschiniE. Charbon  et al.

Focus on on Microscopy 2014 (FOM 2014), Sydney, Australia.

[338] SPADnet a Digital Silicon PhotoMultiplier for Positron Emission Tomography: presentation and characterization

L. MaingaultE. Gros d’AillonL. AndréL. VergerE. Charbon  et al.

New Developments in Photodetection 2014 (NDIP 2014), Tours, France, July 2014.

[339] Updates from the SPADnet project (fully digital, scalable and networked photonic component for Time-of-Flight PET applications)

E. CharbonC. BruschiniC. VeerappanL. H. BragaN. Massari  et al.

PSMR 2014 (PET-MR 2014), Kos, Greece, May 2014.

[340] SPADs for quantum random number generators and beyond

S. BurriD. StuckiY. MaruyamaC. BruschiniE. Charbon  et al.

2014. 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), Singapore, Singapore, January 20-23, 2014. p. 788-794. DOI : 10.1109/ASPDAC.2014.6742986.

[341] SPADnet network modeling, simulation and emulation

C. VeerappanE. VenialgoC. BruschiniE. Charbon

2014. 2014 19th IEEE-NPSS Real Time Conference, Nara, Japan, May 26-30, 2014. p. 1-2. DOI : 10.1109/RTC.2014.7097553.

[342] SPADnet: a fully digital, scalable and networked photonic component for time-of-flight PET applications

C. BruschiniE. CharbonC. VeerappanL. H. C. BragaN. Massari  et al.

2014. Conference on Biophotonics - Photonic Solutions for Better Health Care IV, Brussels, BELGIUM, APR 14-17, 2014. DOI : 10.1117/12.2051952.

[343] UV-Sensitive Low Dark-Count PureB Single-Photon Avalanche Diode

L. QiK. R. C. MokM. AminianE. CharbonL. K. Nanver

Ieee Transactions On Electron Devices. 2014. DOI : 10.1109/Ted.2014.2351576.

[344] Ultra-Low-Temperature Silicon and Germanium-on-Silicon Avalanche Photodiodes

M. Aminian

Lausanne, EPFL, 2014. DOI : 10.5075/epfl-thesis-6451.

[345] A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging

S. BurriF. PowolnyC. BruschiniX. MichaletF. Regazzoni  et al.

2014. Conference on Optical Sensing and Detection III, Brussels, BELGIUM, APR 14-17, 2014. DOI : 10.1117/12.2052862.

[346] Virtual Ways: Low-Cost Coherence for Instruction Set Extensions with Architecturally Visible Storage

T. KluterS. BurriP. BriskE. CharbonP. Ienne

Acm Transactions On Architecture And Code Optimization. 2014. DOI : 10.1145/2576877.

[347] Architecture and applications of a high resolution gated SPAD image sensor

S. BurriY. MaruyamaX. MichaletF. RegazzoniC. Bruschini  et al.

Optics Express. 2014. DOI : 10.1364/Oe.22.017573.

[348] A 270×1 Ge-on-Si photodetector array for sensitive infrared imaging

A. SammakM. AminianL. QiE. CharbonL. K. Nanver

2014. SPIE, Optical Sensing and Detection, Brussels, Belgium, April 14, 2014. DOI : 10.1117/12.2051993.

[349] Single-Photon Avalanche Diode Imagers Applied to Near-Infrared Imaging

J. M. PaviaM. WolfE. Charbon

Ieee Journal Of Selected Topics In Quantum Electronics. 2014. DOI : 10.1109/Jstqe.2014.2313983.

[350] Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery

J. M. PaviaM. WolfE. Charbon

Optics Express. 2014. DOI : 10.1364/Oe.22.004202.

[351] Way Stealing: A Unified Data Cache and Architecturally Visible Storage for Instruction Set Extensions

T. KluterP. BriskE. CharbonP. Ienne

Ieee Transactions On Very Large Scale Integration (Vlsi) Systems. 2014. DOI : 10.1109/Tvlsi.2012.2236689.

[352] SPADnet: Smart Sensor Network with Embedded Coincidence Detection for PET

E. CharbonC. Bruschini

London Image Sensors, London, UK, March 2013.

[353] SPAD array camera for localization based super resolution microscopy

V. KrishnaswamiS. BurriF. RegazzoniC. BruschiniC. J. F. van Noorden  et al.

Focus On Microscopy Conference, Maastricht, the Netherlands, March 24-27, 2013.

[354] Towards a High-Speed Quantum Random Number Generator

D. StuckiS. BurriE. CharbonC. ChunnilallA. Meneghetti  et al.

2013. SPIE Conference on Defense and Security, October 29, 2013. DOI : 10.1117/12.2029287.

[355] Jailbreak Imagers: Transforming a Single-Photon Image Sensor into a True Random Number Generator

S. BurriD. StuckyY. MaruyamaC. BruschiniE. Charbon  et al.

2013. International Image Sensor Workshop, Utah, USA, June 12-16, 2013.

[356] Comparison of Two Cameras based on Single Photon Avalanche Diodes (SPADs) for Fluorescence Lifetime Imaging Application with Picosecond Resolution

F. E. PowolnyS. BurriC. BruschiniX. MichaletF. Regazzoni  et al.

2013. International Image Sensor Workshop, Utah, USA, June 12-16, 2013`.

[357] Reverse Biasing and Breakdown Behavior of PureB Diodes

L. QiK. MokM. AminianT. ScholtesE. Charbon  et al.

2013. 13th International Workshop on Junction Technology (IWJT), Kyoto, Japan, 6-7 June 2013. DOI : 10.1109/IWJT.2013.6644508.

[358] UV-Sensitive Low Dark-Count PureB Single-Photon Avalanche Diode

L. QiK. R. C. MokE. CharbonL. K. NanverM. Aminian

2013. IEEE Optical Sensors on Silicon Session, Baltimore, USA, November 2013. DOI : 10.1109/ICSENS.2013.6688603.

[359] A Geiger Mode APD fabricated in Standard 65nm CMOS Technology

H. YoonY. MaruyamaE. Charbon

2013. IEEE International Electron Device Meeting (IEDM), Washington, DC, USA, December 2013. p. 27.5.1-27.5.4. DOI : 10.1109/IEDM.2013.6724705.

[360] An Optical Punch-Through Diode and Gate Biasing 1-T Pixel for Binary Pixels in Fully Digital CMOS Image Sensors

H. YoonE. Charbon

2013. Intl. Image Sensor Workshop (IISW), Snowbird Resort, Utah, USA, June 12-16, 2013.

[361] The Role of FPGAs and Reconfigurable Acquisition in Future PET/SPECT Systems

C. VeerappanC. BruschiniE. Charbon

First Mediterranean Thematic Workshop on Advanced Molecular Brain Imaging with Compact High Performance MRI Compatible PET and SPECT Imagers, Giardini di Naxos (Taormina, Sicily,Italy), 30,31 August 2012.

[362] Sensor Network Architecture for a Fully Digital and Scalable SPAD based PET System

C. VeerappanC. BruschiniE. Charbon

2012. IEEE Nuclear Science Symposium (NSS), October 2012. DOI : 10.1109/nssmic.2012.6551280.

[363] 3D near-infrared imaging based on a single-photon avalanche diode array sensor

J. Mata PaviaM. WolfE. Charbon

2012. SPIE Biosensing and Nanomedicine V, 10 October, 2012. p. 84601J-1-6. DOI : 10.1117/12.978029.

[364] 3D near-infrared imaging based on a single-photon avalanche diode array sensor: A new perspective on reconstruction algorithms

J. Mata PaviaE. CharbonB. Wolf

2012. Biomedical Optics, Miami, Florida, April 28, 2012. p. BW1A.5. DOI : 10.1364/BIOMED.2012.BW1A.5.

[365] Fluorescent magnetic bead and cell differentiation/counting using a CMOS SPAD matrix

E. DupontE. LabonneY. MaruyamaC. VandevyverU. Lehmann  et al.

Sensors and Actuators B. 2012. DOI : 10.1016/j.snb.2012.06.049.

[366] A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology

M. GersbachY. MaruyamaR. TrimanandaM. W. FishburnD. Stoppa  et al.

Ieee Journal Of Solid-State Circuits. 2012. DOI : 10.1109/JSSC.2012.2188466.

[367] A Ge-on-Si single-photon avalanche diode operating in Geiger mode at infrared wavelengths

M. AminianA. SammakL. QiL. K. NanverE. Charbon

2012. SPIE defence security and sensing. p. 83750Q-1-83750Q-10. DOI : 10.1117/12.920561.

[368] Optically-Clocked Instruction Set Extensions for High Efficiency Embedded Processors

C. FaviT. KluterC. MesterE. Charbon

Ieee Transactions On Circuits And Systems I-Regular Papers. 2012. DOI : 10.1109/TCSI.2011.2169730.

[369] Facts and myths. What should we expect from integrated SPAD imaging?

E. CharbonC. Bruschini

Swiss Image and Vision Sensors Workshop 2011 (SIVS 2011), Zurich, Switzerland, Sept. 8, 2011.

[370] MEGAFRAME: a fully integrated, time-resolved 160x128 SPAD pixel array with microconcentrators

C. VeerappanJ. RichardsonR. WalkerD. LiM. W. Fishburn  et al.

SPIE conference Advanced Photon Counting Techniques.

[371] Sensor arrangement and method for water quality monitoring

A. SchnyderC. NosedaE. Charbon

EP2349932 ; WO2010051842 . 2011.

[372] Image sensor having nonlinear response

E. CharbonL. SbaizM. VetterliS. Susstrunk

US8633996 ; EP2283644 ; US2011121421 ; EP2283644 ; WO2009136989 . 2011.

[373] A Handheld Probe for beta(+)-Emitting Radiotracer Detection in Surgery, Biopsy and Medical Diagnostics based on Silicon Photomultipliers

C. MesterC. BruschiniP. MagroN. DemartinesV. Dunet  et al.

2011. IEEE Nuclear Science Symposium/Medical Imaging Conference (NSS/MIC)/18th International Workshop on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors, Valencia, SPAIN, OCT 23-29, 2011. p. 253-257. DOI : 10.1109/nssmic.2011.6154491.

[374] A Handheld beta(+) Probe for Intra-Operative Detection of Radiotracers

C. MesterC. BruschiniP. MagroN. DemartinesV. Dunet  et al.

2011. IEEE Conference on Sensors, Limerick, IRELAND, Oct 28-31, 2011. p. 1812-1814. DOI : 10.1109/icsens.2011.6127141.

[375] The Gigavision Camera: A 2Mpixel Image Sensor with 0.56um2 1-T Digital Pixels

H. YoonE. Charbon

2011. Intl. Image Sensor Workshop (IISW), June, 2011.

[376] A Disdrometer based on ultra-fast SPAD Cameras

A. BerthoudS. BurriC. BruschiniA. BerneE. Charbon

2011. Imaging Systems and Applications, 10–14 July Toronto, Canada, 2011. p. IMA2. DOI : 10.1364/ISA.2011.IMA2.

[377] A Time-Gated 128x128 CMOS SPAD Array for on-Chip Fluorescence Detection

Y. MaruyamaE. Charbon

2011. Intl. Image Sensor Workshop (IISW), June, 2011.

[378] An All-Digital, Time-gated 128x128 SPAD Array for On-chip, Filter-less Fluorescence Detection

Y. MaruyamaE. Charbon

2011. IEEE Transducers, Beijing, China, 5-9 June 2011. p. 1180-1183. DOI : 10.1109/TRANSDUCERS.2011.5969324.

[379] A CMOS Compatible Ge-on-Si APD Operating in Proportional and Geiger Modes at Infrared Wavelengths

A. SammakM. AminianL. QiW. D. de BoerE. Charbon  et al.

2011. IEEE Intl. Electron Device Meeting (IEDM), Washington, DC, USA, December, 2011. p. 8.5.1-8.5.4. DOI : 10.1109/IEDM.2011.6131515.

[380] Electrons: Do We Really Need Them? (KEYNOTE SPEECH)

E. Charbon

2011. Intl. Workshop on Advances in Sensor Integration (IWASI), June, 2011.

[381] Who Needs Electrons? (KEYNOTE SPEECH)

E. Charbon

2011. IEEE Intl. Conference on ASIC (ASICON), October, 2011.

[382] Deep-submicron CMOS Single Photon Detectors and Quantum Effects

M. A. Karami

TUDelft, Netherlands, 2011.

[383] Hybrid Small Animal Imaging System Combining Magnetic Resonance Imaging with Fluorescence Tomography Using Single Photon Avalanche Diode Detectors

F. StukerC. BaltesK. DikaiouD. VatsL. Carrara  et al.

IEEE Transactions on Medical Imaging. 2011. DOI : 10.1109/TMI.2011.2112669.

[384] Reduction of Fixed-Position Noise in Position-Sensitive, Single-Photon Avalanche Diodes

M. FishburnY. MaruyamaE. Charbon

Transactions on Electron Devices. 2011. DOI : 10.1109/TED.2011.2148117.

[385] Single-Photon Detection--Evolving CMOS Technology for High-Performance

E. Charbon

OPN Optics and Photonics News. 2011.

[386] Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique

J. Y. KimN. B. BrauerV. FakhfouriD. BoikoE. Charbon  et al.

Optical Materials Express. 2011. DOI : 10.1364/OME.1.000259.

[387] Single-Photon Techniques for Standard CMOS Digital ICs

C. Favi

Lausanne, EPFL, 2011. DOI : 10.5075/epfl-thesis-4954.

[388] Sensor arrangement for permanent remote monitoring of water quality in water supply network, has sensors arranged with respect to water flow path such that sensing parts are arranged close to middle axis of path

A. SchnyderC. NosedaE. Charbon

CH699850 . 2010.

[389] Single photon detector and associated methods for making the same

J. RichardsonL. GrantM. GersbachE. CharbonC. Niclass  et al.

US7898001 ; US2010133636 . 2010.

[390] Controlling spectral response of photodetector for an image sensor

E. CharbonC. Niclass

US7683308 ; US2006131480 . 2010.

[391] Virtual Ways: Efficient Coherence for Architecturally Visible Storage in Automatic Instruction Set Extensions

T. KluterS. BurriP. BriskE. CharbonP. Ienne

2010. 5th International Conference on High Performance Embedded Architectures and Compilers, Pisa, ITALY, Jan 25-27, 2010. p. 126-140. DOI : 10.1007/978-3-642-11515-8_11.

[392] RTS Noise Characterization in Single-Photon Avalanche Diodes

M. A. KaramiL. CarraraC. NiclassM. FishburnE. Charbon

Ieee Electron Device Letters. 2010. DOI : 10.1109/LED.2010.2047234.

[393] A new single-photon avalanche diode in 90nm standard CMOS technology

M. A. KaramiM. GersbachH.-J. YoonE. Charbon

Optics Express. 2010. DOI : 10.1364/OE.18.022158.

[394] Radiation-Tolerant CMOS Single-Photon Imagers for Multiradiation Detection

E. CharbonL. CarraraC. NiclassN. ScheideggerH. Shea

Radiation Effects in Semiconductors; CRC Press, 2010. p. 31-50.

[395] The Gigavision Camera

F. YangL. SbaizE. CharbonY. LuS. Süsstrunk  et al.

IEEE International Conference on Computational Photography (ICCP), MIT, Boston, Massachusetts, USA, March 28-30, 2010.

[396] A new ethylene glycol-silane monolayer for highly-specific DNA detection on Silicon Chips

S. CarraraA. CavalliniY. MaruyamaE. CharbonG. De Micheli

Surface Science Letters. 2010. DOI : 10.1016/j.susc.2010.08.025.

[397] Architectural Support for Coherent Architecturally Visible Storage in Instruction Set Extensions

T. J. H. Kluter

Lausanne, EPFL, 2010. DOI : 10.5075/epfl-thesis-4672.

[398] On Pixel Detection Threshold in the Gigavision Camera

F. YangL. SbaizE. CharbonS. SüsstrunkM. Vetterli

2010. IS&T/SPIE Electronic Imaging, Digital Photography VI, San Jose, January 17-21, 2010. DOI : 10.1117/12.840015.

[399] Monolithic Silicon Chip for Immunofluorescence Detection on Single Magnetic Beads

E. P. DupontE. LabonneC. VandevyverU. LehmannE. Charbon  et al.

Analytical Chemistry. 2010. DOI : 10.1021/ac902241j.

[400] Integrated receiving circuit and method for radiofrequency and high speed signals

E. CharbonM. GersbachM. Sergio

US8781028 ; US2010208845 ; WO2009036802 . 2009.

[401] Time-of-flight based imaging system using a display as illumination source

C. NiclassE. CharbonJ. Nolan

US8810647 ; CN102027388 ; EP2283383 ; CN102027388 ; US2011037849 ; EP2283383 ; WO2009124601 . 2009.

[402] Way Stealing: Cache-assisted Automatic Instruction Set Extensions

T. KluterP. BriskP. IenneE. Charbon

2009. 46th ACM/IEEE Design Automation Conference (DAC 2009), San Francisco, CA, Jul 26-31, 2009. p. 31-36. DOI : 10.1145/1629911.1629923.

[403] A 17 ps Resolution, Temperature Compensated Time-to-Digital Converter in FPGA Technology

C. FaviE. Charbon

IEEE Transactions on Circuits and Systems. 2009.

[404] Image Reconstruction in the Gigavision Camera

F. YangL. SbaizE. CharbonS. SüsstrunkM. Vetterli

2009. Ninth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras (OMNIVIS 2009), Kyoto, September 27 - October 4. p. 2212-2219. DOI : 10.1109/ICCVW.2009.5457554.

[405] Single-photon detector arrays for time-resolved fluorescence imaging

M. Gersbach

Lausanne, EPFL, 2009. DOI : 10.5075/epfl-thesis-4521.

[406] The Gigavision Camera

L. SbaizF. YangE. CharbonS. SüsstrunkM. Vetterli

2009. IEEE International Conference on Acoustics, Speech, and Signal Processing, Taipei, April 19-24, 2009. p. 1093-1096. DOI : 10.1109/ICASSP.2009.4959778.

[407] A 128x128 Single-Photon Imager with on-Chip Column-Level 10bit Time-to-Digital-Converter Array

C. NiclassC. FaviT. KluterM. GersbachE. Charbon

Journal of Solid-State Circuits. 2008. DOI : 10.1109/JSSC.2008.2006445.

[408] Introduction to the Special Issue on the 33rd European Solid-State Circuits Conference (ESSCIRC 2007)

A. BaschirottoE. CharbonS. Rusu

Ieee Journal Of Solid-State Circuits. 2008. DOI : 10.1109/JSSC.2008.922406.

[409] High Speed CMOS Imaging: Four Years Later

E. Charbon

2008. 9th International Conference on Solid-State and Integrated-Circuit Technology, Beijing, PEOPLES R CHINA, Oct 20-23, 2008. p. 1005-1008. DOI : 10.1109/ICSICT.2008.4734722.

[410] Method and apparatus to determine a planet vector

E. CharbonR. KrpounN. ScheideggerH. R. Shea

EP1950540 ; US2008177473 . 2008.

[411] A 128x128 Single-Photon Imager with on-Chip Column-Level 10bit Time-to-Digital-Converter Array

C. NiclassC. FaviT. KluterM. GersbachE. Charbon

2008. IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, February, 2008. p. 44-45, 594. DOI : 10.1109/ISSCC.2008.4523048.

[412] A Virtual Keyboard System based on Multi-Level Feature Matching

H. DuE. Charbon

2008. IEEE HIS, Crakow, Poland, May, 2008. p. 176-181. DOI : 10.1109/HSI.2008.4581429.

[413] Techniques for Fully Integrated Intra-/Inter-chip Optical Communication

C. FaviE. Charbon

2008. Design Automation Conference, Anaheim, CA, 8-13 June, 2008. p. 343–344. DOI : 10.1145/1391469.1391558.

[414] Single-Photon Synchronous Detection

C. NiclassC. FaviT. KluterF. MonnierE. Charbon

2008. ESSCIRC, Edinburgh, September 2008. p. 114-117. DOI : 10.1109/ESSCIRC.2008.4681805.

[415] A Single-Photon Detector Implemented in a130nm CMOS Imaging Process

M. GersbachC. NiclassJ. RichardsonR. HendersonL. Grant  et al.

2008. ESSDERC, Edinburgh, September 2008. p. 270-273. DOI : 10.1109/ESSDERC.2008.4681750.

[416] A Study of the Effects of Gamma Radiation on CMOS Single-Photon Avalanche Diodes

M. GersbachC. NiclassL. CarraraM. SergioN. Scheidegger  et al.

2008. IEEE Sensors, Lecce, Italy, October 2008.

[417] On-Chip Sandwich Immunoassay in an Integrated Magneto-Optical CMOS Microsystem

E. DupontU. LehmannM. LombardiniE. CharbonM. A. M. Gijs

2008. MicroTas, San Diego, CA.

[418] Towards Large Scale CMOS Single-Photon Detector Arrays for Lab-on-Chip Applications

E. Charbon

Journal of Physics D: Applied Physics. 2008. DOI : 10.1088/0022-3727/41/9/094010.

[419] Single-photon image sensors in CMOS

C. L. Niclass

Lausanne, EPFL, 2008. DOI : 10.5075/epfl-thesis-4161.

[420] Application of 3D range camera in virtual human-computer interfaces

H. Du

Lausanne, EPFL, 2008. DOI : 10.5075/epfl-thesis-4152.

[421] Precision imaging for biosensing (INVITED)

E. Charbon

2007. 7th International Conference on ASIC, Guilin, PEOPLES R CHINA, Oct 26-29, 2007. p. 744-749. DOI : 10.1109/ICASIC.2007.4415738.

[422] 3D Hand Model Fitting for Virtual Keyboard System

H. DuE. Charbon

2007. IEEE Workshop on Applications of Computer Vision (WACV), Austin, February, 2007. p. 31-31. DOI : 10.1109/WACV.2007.3.

[423] A 128x2 CMOS Single Photon Streak Camera with Timing-Preserving Latchless Pipeline Readout

M. SergioC. NiclassE. Charbon

2007. International Solid-State Circuits Conference (ISSCC), San Francisco, CA, February, 2007. p. 394-610. DOI : 10.1109/ISSCC.2007.373460.

[424] A Single-Photon Avalanche Diode Imager for Fluorescence Lifetime Applications

D. E. SchwartzE. CharbonK. L. Shepard

2007. IEEE Symposium on VLSI, Kyoto, 14-16 June 2007. DOI : 10.1109/VLSIC.2007.4342691.

[425] A CMOS Microsystem Combining Magnetic Actuation and In-Situ Optical Detection of Microparticles

U. LehmannM. SergioS. PietrocolaC. NiclassE. Charbon  et al.

2007. 14th International Conference on Solid-State Sensors, Actuators and Microsystems/21st European Conference on Solid-State Transducers, Lyon, June 10-14, 2007. p. 2493-2496. DOI : 10.1109/SENSOR.2007.4300677.

[426] Time-correlated Two-photon Fluorescence Imaging with Arrays of Solid-state Single Photon Detector

M. GersbachD. L. BoikoC. NiclassC. PetersenE. Charbon

2007. CLEO Europe-IQEC, Munich, June, 2007.

[427] Detection of Fluorescently Labelled Magnetic Particles for Lab-on-a-chip Applications

E. DupontU. LehmannM. LombardiniE. CharbonM. A. M. Gijs

2007. The 11th Annual European Conference on Micro & Nanoscale Technologies for the Biosciences, Montreux, November, 2007.

[428] Particle-Shadow Tracking – Combining Magnetic Particle Manipulation with In-Situ Optical Detection in a CMOS Microsystem

U. LehmannM. SergioS. PietrocolaC. NiclassM. A. M. Gijs  et al.

2007. International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTas), November, 2007.

[429] A 130nm CMOS Single Photon Avalanche Diode

C. NiclassM. GersbachR. K. HendersonL. GrantE. Charbon

2007. Conference on Optoelectronic Devices - Physics, Fabrication, and Application IV, Boston, MA, Sep 11, 2007. p. 676606. DOI : 10.1117/12.728878.

[430] A Single Photon Avalanche Diode Implemented in 130nm CMOS Technology

C. NiclassM. GersbachR. K. HendersonL. GrantE. Charbon

Journal of Selected Topics in Quantum Electronics. 2007. DOI : 10.1109/JSTQE.2007.903854.

[431] A new concept for a low-cost Earth sensor: Imaging oxygen airglow with arrays of single photon detectors

N. ScheideggerR. KrpounH. SheaC. NiclassE. Charbon

2007. 30th Annual AAS Guidance and Control Conference, Breckenridge, Colorado, February 3–7, 2007.

[432] A profiling framework for high level design space exploration for memory and system architectures

C. Clerc

Lausanne, EPFL, 2007. DOI : 10.5075/epfl-thesis-3706.

[433] Time-Correlated Fluorescence Microscopy using a Room Temperature Solid-State Single Photon Sensor

M. GersbachC. NiclassM. SergioD. L. BoikoC. Petersen  et al.

2006. International Conference of Near-Field Optics, Nanophotonics, Lausanne, Switzerland, September, 2006.

[434] A Single Photon Avalanche Diode Array Fabricated in 0.35um CMOS and based on an Event-Driven Readout for TCSPC Experiments

C. NiclassM. SergioE. Charbon

2006. SPIE Optics East, Boston, October 1-4, 2006. DOI : 10.1117/12.685974.

[435] A Room Temperature CMOS Single Photon Sensor for Chemiluminescence Detection

M. GersbachY. MaruyamaC. NiclassK. SawadaE. Charbon

2006. International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTas), November, 2006.

[436] Single Photon Imaging in CMOS

E. Charbon

2006. LEOS, Montreal, November, 2006. p. 721-722. DOI : 10.1109/LEOS.2006.278935.

[437] Oversampled Time Estimation Techniques for Precision Photonic Detectors

R. K. HendersonB. R. RaeD. RenshawE. Charbon

2006. International Conference on Very Large Scale Integration, Nice, France, October, 2006. p. 48-51. DOI : 10.1109/VLSISOC.2006.313202.

[438] A CMOS 64x48 Single Photon Avalanche Diode Array with Event-Driven Readout

C. NiclassM. SergioE. Charbon

2006. IEEE European Solid-State Circuits Conference, Montreux, Switzerland, 19-21 Septembre 2006. p. 556-559. DOI : 10.1109/ESSCIR.2006.307485.

[439] An action selection architecture for autonomous virtual humans in persistent worlds

E. d. Sevin

Lausanne, EPFL, 2006. DOI : 10.5075/epfl-thesis-3468.

[440] A Virtual Keyboard Based on True-3D Optical Ranging

H. DuT. OggierF. LustenbergerE. Charbon

2005. British Machine Vision Conference 2005, Oxford, U.K., 5th-8th September 2005. p. 220-229. DOI : 10.5244/C.19.27.

[441] Arrays of Single Photon Avalanche Diodes in CMOS Technology: Picosecond Timing Resolution for Range Imaging (INVITED)

C. NiclassP.-A. BesseE. Charbon

2005. 1st Range Imaging Research Day, Zurich, Switzerland, Sept., 2005.

[442] CMOS imager based on single photon avalanche diodes

C. NiclassA. RochasP.-A. BesseR. S. PopovicE. Charbon

2005. International Conference on Solid State Sensors and Actuators and Microsystems, Seoul, Korea, June, 2005. p. 1030-1034. DOI : 10.1109/SENSOR.2005.1496631.

[443] A single photon detector array with 64x64 resolution and millimetric depth accuracy for 3D imaging

C. NiclassE. Charbon

2005. IEEE International Solid-State Circuits Conference, San Francisco - CA, Feb., 2005. p. 364-365, 604. DOI : 10.1109/ISSCC.2005.1494020.

[444] Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes

C. NiclassA. RochasP.-A. BesseE. Charbon

IEEE Journal of Solid-State Circuits. 2005. DOI : 10.1109/JSSC.2005.848173.

[445] Object-oriented approach for dynamic system modelling and simulation

A. Besrour

Lausanne, EPFL, 2005. DOI : 10.5075/epfl-thesis-3130.

[446] Distributed coincidence detection for multi-ring based PET systems

C. VeerappanC. BruschiniE. Charbon

2004. 2014 19th IEEE-NPSS Real Time Conference, Nara, Japan, May 26-30, 2014. p. 1-2. DOI : 10.1109/RTC.2014.7097478.

[447] A CMOS 3D camera with millimetric depth resolution

C. NiclassA. RochasP.-A. BesseE. Charbon

2004. IEEE Custom Integrated Circuits Conference, Orlando - FL, Sept., 2006. p. 705-708. DOI : 10.1109/CICC.2004.1358925.

[448] Toward a 3-D Camera Based on Single Photon Avalanche Diodes

C. NiclassA. RochasP.-A. BesseE. Charbon

IEEE Journal of Selected Topics in Quantum Electronics. 2004. DOI : 10.1109/JSTQE.2004.833886.

[449] Fault tolerant self-replicating systems

E. Petraglio

Lausanne, EPFL, 2004. DOI : 10.5075/epfl-thesis-2973.

[450] Substrate Noise: Analysis and Optimization for IC Design

E. CharbonR. GharpureyP. MiliozziR. G. MeyerA. Sangiovanni-Vincentelli

Berlin: Springer.

[451] A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits

H. ChangE. CharbonU. ChoudhuryA. DemirE. Felt  et al.

Norwell, Massachusetts 02061 USA: Springer Verlag.

[452] Automation of IC Layout with Analog Constraints

E. MalavasiE. CharbonE. FeltA. Sangiovanni-Vincentelli

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 1996. DOI : 10.1109/43.511572.

[453] Symbolic compaction with analogue constraints

E. MalavasiE. FeltE. CharbonA. Sangiovanni-Vincentelli

International Journal of Circuit Theory and Applications. 1995. DOI : 10.1002/cta.4490230414.

[454] A Top-down, Constraint-Driven Design Methodology for Analog Integrated Circuits

E. MalavasiH. ChangA. Sangiovanni-VincentelliE. CharbonU. Choudhury  et al.

Analog Circuit Design; Dodrecht, The Netherlands: Springer Verlag, 1993. p. 285-324.

Research

Current Research Fields

SPAD imaging
Ultra-fast imaging
Quantum imaging
Quantum computing
CMOS design
Cryo-CMOS design

Past TU Delft Students

Antolovic, A. Michel; Fishburn, Michael W.; Karami, Mohammad K.; Gersbach, Marek.

PhD Students

Baris Can Efe, Halil Kerim Yildirim, Vladimir Pesic, Chang Liu, Cyril Alexis De Vaucleroy, Paul Mos, Yang Lin, Chufan Zhou, Won Yong Ha, Yating Zou, Samuele Bisi, Kodai Kaneyasu, Batuhan Keskin, Alexandre Germain Philippe Domenech, Prabhleen Singh, Suraj Bhimrao Gaikwad, Tommaso Milanese, Halil Andac Yigit

Past EPFL PhD Students

Cristiano Niclass, Huan Du, Marek Gersbach, Ties Jan Henderikus Kluter, Claudio Favi, Mahdi Aminian, Juan Mata Pavia, Samuel Burri, Scott Lindner, Kazuhiro Morimoto, Andrea Ruffino, Preethi Padmanabhan, Arin Can Ülkü, Francesco Gramuglia, Fulvio Martinelli, Andrei Ardelean, Andrada Alexandra Muntean, Jiuxuan Zhao, Simone Frasca, Pouyan Keshavarzian, Francesco Piro, Ekin Kizilkan, Utku Karaca, Jad Benserhir, Hung-Chi Han, Ming-Lo Wu

Courses

Introduction to quantum science and technology

QUANT-400

A broad view of the diverse aspects of the field is provided: quantum physics, communication, quantum computation, simulation of physical systems, physics of qubit platforms, hardware technologies. Students will grasp the field as a whole and better orient themselves on specialized topics.

Metrology

MICRO-428

The course deals with the concept of measuring in different domains, particularly in the electrical, optical, and microscale domains. The course will end with a perspective on quantum measurements, which could trigger the ultimate revolution in metrology.

Metrology practicals

MICRO-429

The student will get familiar with the techniques learnt in class (MICRO-428) and will put them to practice with experiments in the laboratory. There will be a practical training for each theme covered in class; the students will also learn good practices during measurements (lab notebook included).

Products design & systems engineering

MICRO-406

This course will cover all the aspects of product design and system engineering from learning relevant methods to the actual implementation in a hands-on practice of product development.

Quantum and nanocomputing

MICRO-435

The course teaches non von-Neumann architectures. The first part of the course deals with quantum computing, sensing, and communications. The second focuses on field-coupled and conduction-based nanocomputing, in-memory and molecular computing, cellular automata, and spintronic computing.