Tobias Kippenberg

Full Professor
tobias.kippenberg@epfl.ch +41 21 693 44 28 http://k-lab.epfl.ch/
EPFL SB IPHYS LPQM1
PH D3 355 (Bâtiment PH)
Station 3
CH-1015 Lausanne
+41 21 693 44 28
+41 21 693 44 52
Office: PH D3 355
EPFL > SB > IPHYS > LPQM1
Web site: Web site: https://k-lab.epfl.ch/
EPFL STI IEL LPQM2
PH D3 355 (Bâtiment PH)
Station 3
CH-1015 Lausanne
+41 21 693 44 28
+41 21 693 44 52
Office: PH D3 355
EPFL > STI > IEL > LPQM2
Web site: Web site: https://k-lab.epfl.ch/
+41 21 693 44 28
EPFL > ENT-R > CMI > CMI-CD
Biography
EDUCATION
2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München
2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala)
2000: Master of Science (Applied Physics), California Institute of Technology
1998: BA in Physics, Technical University of Aachen (RWTH), Germany
1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany
ACADEMIC POSITIONS
2013 - present: Full Professor EPFL
2010 - 2012: Associate Professor EPFL
2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne
2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of
Quantum Optics (Division of Prof.T.W. Hänsch)
2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute
2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU)
2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology
2000-2004: Graduate Research Assistant, California Institute of Technology
PRIZES AND HONORS:
ZEISS Research Award 2018
Fellow of the APS 2016
Klung-Wilhelmy Prize 2015
Swiss Latsis Prize 2014
Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015
ICO Prize, 2013
EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010
Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009
Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009
1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht
1st Physics Prize at the German National Science Contest May 1996
FELLOWSHIPS
Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002
Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000
RESEARCH INTERESTS
Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology
PUBLICATIONS AND OFTEN CITED METRICS*:
>70 Publications in peer reviewed journals
Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en
h-Index 54 (Google scholar H: 64, >25,000 citations)
Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017)
*careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm*
KEY PUBLICATIONS AND REVIEWS:
A. Ghadimi, et al.
Elastic strain engineering for ultra high Q nanomechanical oscillators
Science, (2018)
Trocha, et al.
Ultrafast distance measurements using soliton microresonator frequency combs
Science, Vol. 359 (2018)
[joint work with C. Koos]
Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications
Nature (2017)
[joint work with C. Koos]
V. Brasch, et al.
Photonic chip-based optical frequency comb using soliton Cherenkov radiation.
Science, vol. 351, num. 6271 (2015)
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics.
Reviews of Modern Physics 86, 1391-1452, (2014)
Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate.
Nature (2014).
Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
Nature 482, 63-67 (2012).
Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs.
Science 332, 555-559, (2011).
Weis, S. et al. Optomechanically induced transparency.
Science 330, 1520-1523 (2010).
Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale.
Science 321, 1172-1176, (2008).
Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator.
Nature (2007)
Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction.
Physical Review Letters 97, (2006).
Publications
Infoscience publications
Infoscience
2020
Thermal intermodulation noise in cavity-based measurements
Optica. 2020-11-20. Vol. 7, num. 11, p. 1609-1616. DOI : 10.1364/OPTICA.402449.Molecular Platform for Frequency Upconversion at the Single-Photon Level
Physical Review X. 2020-09-14. Vol. 10, num. 3, p. 031057. DOI : 10.1103/PhysRevX.10.031057.Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy
Optica. 2020-09-08. Vol. 7, num. 9, p. 1181-1188. DOI : 10.1364/OPTICA.396542.Reconfigurable radiofrequency filters based on versatile soliton microcombs
Nature Communications. 2020-09-01. Vol. 11, num. 1, p. 4377. DOI : 10.1038/s41467-020-18215-z.Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides
Photonics Research. 2020-09-01. Vol. 8, num. 9, p. 1475-1483. DOI : 10.1364/PRJ.396489.Nonlinear states and dynamics in a synthetic frequency dimension
Physical Review A. 2020-08-13. Vol. 102, num. 2, p. 023518. DOI : 10.1103/PhysRevA.102.023518.Parallel gas spectroscopy using mid-infrared supercontinuum from a single Si3N4 waveguide
Optics Letters. 2020-04-07. Vol. 45, num. 8, p. 2195-2198. DOI : 10.1364/OL.390086.Optomechanical generation of a mechanical catlike state by phonon subtraction
Physical Review A. 2020-03-11. Vol. 101, num. 3, p. 033812. DOI : 10.1103/PhysRevA.101.033812.Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator
Nature Communications. 2020-01-17. Vol. 11, num. 1, p. 374. DOI : 10.1038/s41467-019-14059-4.Fractal-like Mechanical Resonators with a Soft-Clamped Fundamental Mode
Physical Review Letters. 2020-01-16. Vol. 124, num. 2, p. 025502. DOI : 10.1103/PhysRevLett.124.025502.Demonstration of Tunable Optical Aggregation of QPSK to 16-QAM Over Optically Generated Nyquist Pulse Trains Using Nonlinear Wave Mixing and a Kerr Frequency Comb
Journal Of Lightwave Technology. 2020-01-15. Vol. 38, num. 2, p. 359-365. DOI : 10.1109/JLT.2019.2959803.Observation of Stimulated Brillouin Scattering in Silicon Nitride Integrated Waveguides
Physical Review Letters. 2020-01-03. Vol. 124, num. 1, p. 1-7, 013902. DOI : 10.1103/PhysRevLett.124.013902.Integrated gallium phosphide nonlinear photonics
Nature Photonics. 2020-01-01. Vol. 14, num. 1, p. 57-+. DOI : 10.1038/s41566-019-0537-9.2019
Polychromatic Cherenkov Radiation Induced Group Velocity Symmetry Breaking in Counterpropagating Dissipative Kerr Solitons
Physical Review Letters. 2019-12-17. Vol. 123, num. 25, p. 253902. DOI : 10.1103/PhysRevLett.123.253902.Formation Rules and Dynamics of Photoinduced χ(2) Gratings in Silicon Nitride Waveguides
ACS Photonics. 2019-12-09. DOI : 10.1021/acsphotonics.9b01301.Floquet dynamics in the quantum measurement of mechanical motion
Physical Review A. 2019-11-25. Vol. 100, num. 5, p. 053852. DOI : 10.1103/PhysRevA.100.053852.Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements
Physical Review X. 2019-10-30. Vol. 9, num. 4. DOI : 10.1103/PhysRevX.9.041022.Dynamics of soliton crystals in optical microresonators
Nature Physics. 2019-10-01. Vol. 15, num. 10, p. 1071-+. DOI : 10.1038/s41567-019-0635-0.Thermally stable access to microresonator solitons via slow pump modulation
Optics Letters. 2019-09-15. Vol. 44, num. 18, p. 4447-4450. DOI : 10.1364/OL.44.004447.High-rate photon pairs and sequential Time-Bin entanglement with Si3N4 microring resonators
Optics Express. 2019-07-08. Vol. 27, num. 14, p. 19309-19318. DOI : 10.1364/OE.27.019309.Thermorefractive noise in silicon-nitride microresonators
Physical Review A. 2019-06-24. Vol. 99, num. 6, p. 061801. DOI : 10.1103/PhysRevA.99.061801.Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide
Optical Materials Express. 2019-06-01. Vol. 9, num. 6, p. 2553-2559. DOI : 10.1364/OME.9.002553.Optical backaction-evading measurement of a mechanical oscillator
Nature Communications. 2019-05-07. Vol. 10, p. 2086. DOI : 10.1038/s41467-019-10024-3.Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum
Nature Communications. 2019-04-04. Vol. 10, p. 1553. DOI : 10.1038/s41467-019-09590-3.Electrically pumped photonic integrated soliton microcomb (vol 10, 680, 2018)
Nature Communications. 2019-04-03. Vol. 10, p. 1623. DOI : 10.1038/s41467-019-09529-8.Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb
Optics Letters. 2019-04-01. Vol. 44, num. 7, p. 1852-1855. DOI : 10.1364/OL.44.001852.Clamp-Tapering Increases the Quality Factor of Stressed Nanobeams
Nano Letters. 2019-04-01. Vol. 19, num. 4, p. 2329-2333. DOI : 10.1021/acs.nanolett.8b04942.Orthogonally polarized frequency comb generation from a Kerr comb via cross-phase modulation
Optics Letters. 2019-03-15. Vol. 44, num. 6, p. 1472-1475. DOI : 10.1364/OL.44.001472.Generalized dissipation dilution in strained mechanical resonators
Physical Review B. 2019-02-28. Vol. 99, num. 5, p. 054107. DOI : 10.1103/PhysRevB.99.054107.Electrically pumped photonic integrated soliton microcomb
Nature Communications. 2019-02-08. Vol. 10, p. 680. DOI : 10.1038/s41467-019-08498-2.Demonstration of Multiple Kerr-Frequency-Comb Generation Using Different Lines From Another Kerr Comb Located Up To 50 km Away
Journal Of Lightwave Technology. 2019-01-15. Vol. 37, num. 2, p. 579-584. DOI : 10.1109/JLT.2019.2895851.Spectral Purification of Microwave Signals with Disciplined Dissipative Kerr Solitons
Physical Review Letters. 2019-01-03. Vol. 122, num. 1, p. 013902. DOI : 10.1103/PhysRevLett.122.013902.A microphotonic astrocomb
Nature Photonics. 2019-01-01. Vol. 13, num. 1, p. 31-35. DOI : 10.1038/s41566-018-0309-y.Second- and third-order nonlinear wavelength conversion in an all-optically poled Si3N4 waveguide
Optics Letters. 2019-01-01. Vol. 44, num. 1, p. 106-109. DOI : 10.1364/OL.44.000106.2018
Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb
Optics Letters. 2018-11-15. Vol. 43, num. 22, p. 5563-5566. DOI : 10.1364/OL.43.005563.Nonreciprocity in Microwave Optomechanical Circuits
Ieee Antennas And Wireless Propagation Letters. 2018-11-01. Vol. 17, num. 11, p. 1983-1987. DOI : 10.1109/LAWP.2018.2856622.Spatial multiplexing of soliton microcombs
Nature Photonics. 2018-11-01. Vol. 12, num. 11, p. 699-+. DOI : 10.1038/s41566-018-0256-7.Ultralow-power chip-based soliton microcombs for photonic integration
Optica. 2018-10-20. Vol. 5, num. 10, p. 1347-1353. DOI : 10.1364/OPTICA.5.001347.Evidence for structural damping in a high-stress silicon nitride nanobeam and its implications for quantum optomechanics
Physics Letters A. 2018-08-25. Vol. 382, num. 33, p. 2251-2255. DOI : 10.1016/j.physleta.2017.05.046.Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins
OPTICA. 2018. Vol. 5, num. 7, p. 884-892. DOI : 10.1364/OPTICA.5.000884.Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS. 2018. Vol. 24, num. 4. DOI : 10.1109/JSTQE.2018.2808258.Level attraction in a microwave optomechanical circuit
PHYSICAL REVIEW A. 2018. Vol. 98, num. 2. DOI : 10.1103/PhysRevA.98.023841.Double inverse nanotapers for efficient light coupling to integrated photonic devices
OPTICS LETTERS. 2018. Vol. 43, num. 14, p. 3200-3203. DOI : 10.1364/OL.43.003200.Dissipative Kerr solitons in optical microresonators
SCIENCE. 2018. Vol. 361, num. 6402, p. 567-+. DOI : 10.1126/science.aan8083.A maser based on dynamical backaction on microwave light
PHYSICS LETTERS A. 2018. Vol. 382, num. 33, p. 2233-2237. DOI : 10.1016/j.physleta.2017.05.045.Quantum-Limited Directional Amplifiers with Optomechanics
Physical Review Letters. 2018. Vol. 120, num. 2, p. 3601. DOI : 10.1103/PhysRevLett.120.023601.Effects of erbium-doped fiber amplifier induced pump noise on soliton Kerr frequency combs for 64-quadrature amplitude modulation transmission
Optics Letters. 2018. Vol. 43, num. 11, p. 2495. DOI : 10.1364/OL.43.002495.Elastic strain engineering for ultralow mechanical dissipation
Science. 2018. Vol. 360, num. 6390, p. 764-768. DOI : 10.1126/science.aar6939.Highly efficient coupling of crystalline microresonators to integrated photonic waveguides
Optics Letters. 2018. Vol. 43, num. 9, p. 2106. DOI : 10.1364/OL.43.002106.Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides
Nature Photonics. 2018. Vol. 12, num. 6, p. 330-335. DOI : 10.1038/s41566-018-0144-1.Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators
Nano Letters. 2018. Vol. 18, num. 5, p. 3138-3146. DOI : 10.1021/acs.nanolett.8b00749.An optical-frequency synthesizer using integrated photonics
Nature. 2018. Vol. 557, num. 7703, p. 81-85. DOI : 10.1038/s41586-018-0065-7.Ultrafast optical ranging using microresonator soliton frequency combs
Science. 2018. Vol. 359, num. 6378, p. 887-891. DOI : 10.1126/science.aao3924.Photonic chip-based soliton frequency combs covering the biological imaging window
Nature Communications. 2018. Vol. 9, num. 1, p. 1146. DOI : 10.1038/s41467-018-03471-x.2017
Intermode Breather Solitons in Optical Microresonators
Physical Review X. 2017. Vol. 7, num. 4, p. 041055. DOI : 10.1103/PhysRevX.7.041055.Tunable insertion of multiple lines into a Kerr frequency comb using electro-optical modulators
Optics Letters. 2017. Vol. 42, num. 19, p. 3765-3768. DOI : 10.1364/Ol.42.003765.Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator
Physical Review X. 2017. Vol. 7, num. 3, p. 031055-1. DOI : 10.1103/PhysRevX.7.031055.Pump-linewidth-tolerant wavelength multicasting using soliton Kerr frequency combs
Optics Letters. 2017. Vol. 42, num. 16, p. 3177-3180. DOI : 10.1364/Ol.42.003177.Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators
Optica. 2017. DOI : 10.1364/OPTICA.4.000684.Microresonator-based solitons for massively parallel coherent optical communications
Nature. 2017. Vol. 546, num. 7657, p. 274-279. DOI : 10.1038/nature22387.Nonreciprocal reconfigurable microwave optomechanical circuit
Nature Communications. 2017. Vol. 8, p. 604. DOI : 10.1038/s41467-017-00447-1.Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators
Physical Review A. 2017. Vol. 95, num. 4, p. 043822. DOI : 10.1103/PhysRevA.95.043822.Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon
Optics Letters. 2017. Vol. 42, num. 4, p. 803-806. DOI : 10.1364/Ol.42.000803.Dependence of a microresonator Kerr frequency comb on the pump linewidth
Optics Letters. 2017. Vol. 42, num. 4, p. 779-782. DOI : 10.1364/Ol.42.000779.Coupling Ideality of Integrated Planar High-Q Microresonators
Physical Review Applied. 2017. Vol. 7, num. 2, p. 024026. DOI : 10.1103/PhysRevApplied.7.024026.Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator
Physical Review X. 2017. Vol. 7, num. 1, p. 011001. DOI : 10.1103/PhysRevX.7.011001.Soliton dual frequency combs in crystalline microresonators
Optics Letters. 2017. Vol. 42, num. 3, p. 514. DOI : 10.1364/OL.42.000514.Dual-pump generation of high-coherence primary Kerr combs with multiple sub-lines
Optics Letters. 2017. Vol. 42, num. 3, p. 595. DOI : 10.1364/OL.42.000595.A dissipative quantum reservoir for microwave light using a mechanical oscillator
Nature Physics. 2017. Vol. 13, p. 787-793. DOI : 10.1038/Nphys4121.Breathing dissipative solitons in optical microresonators
Nature Communications. 2017. Vol. 8, num. 1, p. 736. DOI : 10.1038/s41467-017-00719-w.Self-referenced photonic chip soliton Kerr frequency comb
Light: Science & Applications. 2017. Vol. 6, num. 1, p. e16202. DOI : 10.1038/lsa.2016.202.2016
Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials
Nature Communications. 2016-11-21. Vol. 7, p. 13383. DOI : 10.1038/ncomms13383.Study on the detuning-dependent properties of a temporal dissipative Kerr soliton in an optical microresonator
arXiv. 2016.Harmonization of chaos into a soliton in Kerr frequency combs
Optics Express. 2016. Vol. 24, num. 24, p. 27382-27394. DOI : 10.1364/Oe.24.027382.Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state
Optics Express. 2016. Vol. 24, num. 25, p. 29313-29321. DOI : 10.1364/Oe.24.029312.On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator
Physical Review A. 2016. Vol. 94, num. 5. DOI : 10.1103/PhysRevA.94.053815.Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators
Nature Physics. 2016. Vol. 13, num. 1, p. 94-102. DOI : 10.1038/nphys3893.Demonstration of optical multicasting using Kerr frequency comb lines
Optics Letters. 2016. Vol. 41, num. 16, p. 3876-3879. DOI : 10.1364/Ol.41.003876.Frequency comb generation in the green using silicon nitride microresonators
Laser & Photonics Reviews. 2016. Vol. 10, num. 4, p. 631-638. DOI : 10.1002/lpor.201600006.Near-Field Integration of a SiN Nanobeam and a SiO2 Microcavity for Heisenberg-Limited Displacement Sensing
Physical Review Applied. 2016. Vol. 5, num. 5, p. 054019. DOI : 10.1103/PhysRevApplied.5.054019.A strongly coupled K-type micromechanical system
Applied Physics Letters. 2016. Vol. 108, num. 15, p. 153105. DOI : 10.1063/1.4945741.Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers
Optics Letters. 2016. Vol. 41, num. 13, p. 3134. DOI : 10.1364/OL.41.003134.Dissipation engineering of high-stress silicon nitride nanobeams
ArXiv. 2016.Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator
Physical Review Letters. 2016. Vol. 116, num. 10. DOI : 10.1103/PhysRevLett.116.103902.Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics
Optica. 2016. Vol. 3, num. 1, p. 20. DOI : 10.1364/OPTICA.3.000020.Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation
Optics Letters. 2016. Vol. 41, num. 3, p. 452. DOI : 10.1364/OL.41.000452.2015
Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering
Nature Nanotechnology. 2015. Vol. 11, num. 2, p. 164-169. DOI : 10.1038/nnano.2015.264.All-optical stabilization of a soliton frequency comb in a crystalline microresonator
Optics Letters. 2015. Vol. 40, num. 20, p. 4723-4726. DOI : 10.1364/Ol.40.004723.Photonic chip-based optical frequency comb using soliton Cherenkov radiation
Science. 2015. Vol. 351, num. 6271, p. 357-360. DOI : 10.1126/science.aad4811.Counting the cycles of light using a self-referenced optical microresonator
Optica. 2015. Vol. 2, num. 8, p. 706-711. DOI : 10.1364/Optica.2.000706.Plasmomechanical Resonators Based on Dimer Nanoantennas
Nano Letters. 2015. Vol. 15, num. 6, p. 3971-3976. DOI : 10.1021/acs.nanolett.5b00858.Measurement-based control of a mechanical oscillator at its thermal decoherence rate
Nature. 2015. Vol. 524, num. 7565, p. 325-329. DOI : 10.1038/nature14672.Frequency combs and platicons in optical microresonators with normal GVD
Optics Express. 2015. Vol. 23, num. 6, p. 7713-7721. DOI : 10.1364/Oe.23.007713.2014
Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics
Optics Express. 2014. Vol. 22, num. 25, p. 30786-30794. DOI : 10.1364/Oe.22.030786.Cavity optomechanics
Reviews Of Modern Physics. 2014. Vol. 86, num. 4, p. 1391-1452. DOI : 10.1103/RevModPhys.86.1391.Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators
Acs Photonics. 2014. Vol. 1, num. 11, p. 1181-1188. DOI : 10.1021/ph500262b.Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer
Applied Physics Letters. 2014. Vol. 105, num. 13. DOI : 10.1063/1.4896785.Quantum-Limited Amplification and Parametric Instability in the Reversed Dissipation Regime of Cavity Optomechanics
Physical Review Letters. 2014. Vol. 113, num. 2. DOI : 10.1103/PhysRevLett.113.023604.Mode Spectrum and Temporal Soliton Formation in Optical Microresonators
Physical Review Letters. 2014. Vol. 113, num. 12. DOI : 10.1103/PhysRevLett.113.123901.Heralded Single-Phonon Preparation, Storage, and Readout in Cavity Optomechanics
Physical Review Letters. 2014. Vol. 112, num. 14. DOI : 10.1103/PhysRevLett.112.143602.Coherent terabit communications with microresonator Kerr frequency combs
Nature Photonics. 2014. Vol. 8, num. 5, p. 375-380. DOI : 10.1038/nphoton.2014.57.Temporal solitons in optical microresonators
Nature Photonics. 2014. Vol. 8, num. 2, p. 145-152. DOI : 10.1038/Nphoton.2013.343.2013
Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics
Nature Physics. 2013. Vol. 9, num. 3, p. 179-184. DOI : 10.1038/nphys2527.Stabilization of a linear nanomechanical oscillator to its thermodynamic limit
Nature Communications. 2013. Vol. 4. DOI : 10.1038/ncomms3860.Reply to 'Dissipative feedback does not improve the optimal resolution of incoherent force detection'
Nature Nanotechnology. 2013. Vol. 8, num. 10, p. 692-692. DOI : 10.1038/nnano.2013.200.Plasmon Nanomechanical Coupling for Nanoscale Transduction
Nano Letters. 2013. Vol. 13, num. 7, p. 3293-3297. DOI : 10.1021/nl4015028.Nonlinear Quantum Optomechanics via Individual Intrinsic Two-Level Defects
Physical Review Letters. 2013. Vol. 110, num. 19. DOI : 10.1103/PhysRevLett.110.193602.Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat
Review Of Scientific Instruments. 2013. Vol. 84, num. 4. DOI : 10.1063/1.4801456.Mid-infrared optical frequency combs at 2.5 mu m based on crystalline microresonators
Nature Communications. 2013. Vol. 4. DOI : 10.1038/ncomms2335.Phase noise measurement of external cavity diode lasers and implications for optomechanical sideband cooling of GHz mechanical modes
New Journal Of Physics. 2013. Vol. 15. DOI : 10.1088/1367-2630/15/1/015019.2012
Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition
Optics Express. 2012. Vol. 20, num. 25, p. 27661-27669. DOI : 10.1364/OE.20.027661.Electromechanically induced absorption in a circuit nano-electromechanical system
New Journal Of Physics. 2012. Vol. 14. DOI : 10.1088/1367-2630/14/12/123037.A hybrid on-chip optomechanical transducer for ultrasensitive force measurements
Nature Nanotechnology. 2012. Vol. 7, num. 8, p. 509-514. DOI : 10.1038/Nnano.2012.97.Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator
Optics Express. 2012. Vol. 20, num. 17, p. 19185-19193. DOI : 10.1364/OE.20.019185.Universal formation dynamics and noise of Kerr-frequency combs in microresonators
Nature Photonics. 2012. Vol. 6, p. 480-487. DOI : 10.1038/NPHOTON.2012.127.Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode
Nature. 2012. Vol. 482, p. 63-67. DOI : 10.1038/nature10787.2011
Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling
Comptes Rendus Physique. 2011. Vol. 12, p. 800-816. DOI : 10.1016/j.crhy.2011.10.012.Optomechanical Coupling in a Two-Dimensional Photonic Crystal Defect Cavity
Physical Review Letters. 2011. Vol. 106, p. -. DOI : 10.1103/PhysRevLett.106.203902.Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state
Physical Review A. 2011. Vol. 83, p. -. DOI : 10.1103/PhysRevA.83.063835.Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization
Physical Review A. 2011. Vol. 84, p. -. DOI : 10.1103/PhysRevA.84.011804.Octave Spanning Tunable Frequency Comb from a Microresonator
Physical Review Letters. 2011. Vol. 107, p. -. DOI : 10.1103/PhysRevLett.107.063901.2010
Microresonators: Particle sizing by mode splitting
Nature Photonics. 2010. Vol. 4, num. 1, p. 9-10. DOI : 10.1038/nphoton.2009.246.Second-harmonic generation in microresonators through natural phase matching
Physics. 2010. Vol. 3, p. 32. DOI : 10.1103/Physics.3.32.Theoretical Analysis of Mechanical Displacement Measurement Using a Multiple Cavity Mode Transducer
Physical Review Letters. 2010. Vol. 104, p. -. DOI : 10.1103/PhysRevLett.104.033901.Cavity optomechanics with ultrahigh-Q crystalline microresonators
Physical Review A. 2010. Vol. 82, p. -. DOI : 10.1103/PhysRevA.82.031804.Determination of the vacuum optomechanical coupling rate using frequency noise calibration
Optics Express. 2010. Vol. 18, p. 23236-23246. DOI : 10.1364/OE.18.023236.Optomechanically Induced Transparency
Science. 2010. Vol. 330, p. 1520-1523. DOI : 10.1126/science.1195596.Measuring nanomechanical motion with an imprecision below the standard quantum limit
Physical Review A. 2010. Vol. 82, p. -. DOI : 10.1103/PhysRevA.82.061804.2009
Purcell-Factor-Enhanced Scattering from Si Nanocrystals in an Optical Microcavity
Physical Review Letters. 2009. Vol. 103, p. -. DOI : 10.1103/PhysRevLett.103.027406.Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit
Nature Physics. 2009. Vol. 5, p. 509-514. DOI : 10.1038/NPHYS1304.Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion
Nature Photonics. 2009. Vol. 3, p. 529-533. DOI : 10.1038/NPHOTON.2009.138.Cryogenic properties of optomechanical silica microcavities
Physical Review A. 2009. Vol. 80, p. -. DOI : 10.1103/PhysRevA.80.021803.Near-field cavity optomechanics with nanomechanical oscillators
Nature Physics. 2009. Vol. 5, p. 909-914. DOI : 10.1038/NPHYS1425.2008
Resolved-sideband cooling of a micromechanical oscillator
Nature Physics. 2008. Vol. 4, num. 5, p. 415-419. DOI : 10.1038/nphys939.Full Stabilization of a Microresonator-Based Optical Frequency Comb
Physical Review Letters. 2008. Vol. 101, num. 5. DOI : 10.1103/PhysRevLett.101.053903.Cavity-assisted backaction cooling of mechanical resonators
New Journal of Physics. 2008. Vol. 10, num. 9, p. 095007. DOI : 10.1088/1367-2630/10/9/095007.High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators
New Journal Of Physics. 2008. Vol. 10, p. -. DOI : 10.1088/1367-2630/10/9/095015.Ultralow-dissipation optomechanical resonators on a chip
Nature Photonics. 2008. Vol. 2, p. 627-633. DOI : 10.1038/nphoton.2008.199.PHOTONICS Nanomechanics gets the shakes
Nature. 2008. Vol. 456, p. 458-458. DOI : 10.1038/456458a.Parametric Normal-Mode Splitting in Cavity Optomechanics
Physical Review Letters. 2008. Vol. 101, p. -. DOI : 10.1103/PhysRevLett.101.263602.2007
Cavity Opto-Mechanics
Optics Express. 2007-09-10. Vol. 15, num. 25, p. 17172. DOI : 10.1364/OE.15.017172.Selected publications
T.J. Kippenberg and K.J. Vahala Science 321, 1172 (2008) |
Cavity Optomechanics: Back-Action at the Mesoscale |
A. Schlie�er, R. Rivi�re, G. Anetsberger, O. Arcizet, and T.J. Kippenberg Nature Physics 4, 415 (2008) |
Resolved Sideband Cooling of a Micromechanical Oscillator |
P. Del'Haye, A. Schlie�er, O. Arcizet, T. Wilken, R. Holzwarth, and T.J. Kippenberg Nature 450, 1214 (2007) |
Optical frequency comb generation from a monolithic microresonator |
Wilson-Rae, N. Nooshi, W. Zwerger and T.J. Kippenberg Physical Review Letters 99, 093901 (2007) |
Theory of ground state cooling of a mechanical oscillator using dynamical back-action |
A. Schlie�er, P. Del'Haye, N. Nooshi, K. J. Vahala and T. J. Kippenberg Physical Review Letters 97, 243905 (2006) |
Radiation pressure cooling of a micromechanical oscillator using dynamical backaction |
Weis, S. et al. Science 330, 1520-1523, (2010). |
Optomechanically induced transparency |
Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Nature 482, 63-67, (2012) |
Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode |
Aspelmeyer, M., Kippenberg, T. J. & Marquardt Reviews of Modern Physics (2014) |
Cavity optomechanics |
Wilson, D. J. et al. Nature (2015) |
Measurement and control of a mechanical oscillator at its thermal decoherence rate |
V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky and T. J. Kippenberg. Science, vol. 351, num. 6271, p. 357-360, 2015. |
Photonic chip-based optical frequency comb using soliton Cherenkov radiation. |
Teaching & PhD
Teaching
Physics
Electrical and Electronics Engineering
Microengineering